簡易檢索 / 詳目顯示

研究生: 邱聖文
Chiu, Sheng-Wen
論文名稱: 廢大理石粉再循環加工成高放射率遠紅外線材料及加速蔬果植物成長研究
Recycling of waste marble powders into high emissivity of far infrared ray materials and study on growth acceleration of vegetables
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 朱永祺
Ju, Yung-Chi
王克仁
Wang, Keh-Ren
張華砡
Chang, Hua-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 廢大理石粉放射率遠紅外線
外文關鍵詞: Waste marble powder, Emissivity, Far infrared ray
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討廢棄大理石與花崗岩等天然岩石粉末的遠紅外線放射性質、釋放機制,並藉由熱處理提高樣品的遠紅外線放射率。本研究將廢棄岩石粉末進行不同溫度的熱處理,將熱處理後的岩石粉末混合環氧樹脂形成複合材料,再進行放射率量測,以探討不同熱處理溫度對於岩石粉末遠紅外線放射率的影響。
    遠紅外線促進生物生長之原因源自於遠紅外線光子能量可破壞水分子間氫鍵進而細化水分子團。而較小的水分子團有助於促進細胞對於水分的吸收,也可增進生物對於水分之循環運輸。為了證實遠紅外線對水分子團的細化效果,本研究進行NMR量測水分子O17頻譜之半高寬以呈現水分子團之尺寸。實驗結果顯示,經過遠紅外線照射,水分子團尺寸確有下降。
    本實驗進行EPR量測以觀察岩石粉末在乾燥與潮溼下頻譜峰值變化。結果顯示,在潮濕情況下氧空缺峰值降低,導致遠紅外線釋放能力減弱。為確保岩石粉末的乾燥,本實驗將岩石粉末加入環氧樹脂(Epoxy)基材製成複合材料,以增加其應用範圍與實用性。此外,本實驗以FLIR進行樣品表面溫度量測,可發現隨添加量增加表面溫度也隨之提高,但添加量至一定比例後呈現飽和現象。
    為了證實遠紅外線對於生物生長的影響,本實驗進行綠豆種植實驗。除拍照記錄外,也以實驗數據定量紀錄豆芽長度與時間的關係。從本實驗可觀察到隨著岩石粉末添加濃度上升,綠豆的平均生長速率隨之提高,可見岩石粉末產生的遠紅外線確實可加速植物生長。


    This study investigates the far-infrared emissivity properties of natural rock powders such as marble and granite, and improves the far-infrared emissivity of samples by heat treatment. The waste rock powders are heat-treated at different temperatures, and are then mixed with epoxy resin to make composite materials. The emissivity is measured to explore influence of different heat treatment temperatures on the emissivity of the rock powders.
    The reason why far-infrared rays can promote biological growth comes from the fact that the photon energy of far-infrared rays can break the hydrogen bonds between water molecules thus reducing cluster size of water molecules; the smaller the water molecular clusters the faster the absorption, circulation and transportation of water by cells and organisms. In order to verify the effect of far-infrared rays on the refinement of water molecular clusters, this study has carried out NMR measurement to probe the full width at half maximum of the O17 spectrum of water molecules which give information regarding to the size of water molecular clusters. Experimental results show that after far-infrared irradiation, the size of water molecular clusters truly decreases.
    EPR measurement is also carried out to study spectrum variation of rock powders under dry and wet conditions. Results show that the peak arising from oxygen vacancies is weak in wet condition which in turn reduces far-infrared emissivity. In order to protect rock powders from moisture the epoxy resin is mixed with rock powders to make composites which widens application range and practicability. In addition, surface temperature is realized to increase with content of rock powders and becomes stabilized at a certain proportion.
    The influence of far-infrared rays on vegetable growth is studied by planting mung beans in ambient conditions, along with in-situ photographing and recording. The average growth rate of mung beans increases with far-infrared rays produced by rock powders and the relationship between average length of bean sprouts and growing time is uncovered.

    摘要------------------------------I Abstract------------------------------II 致謝------------------------------IV 圖目錄------------------------------VII 表目錄------------------------------X 第一章 文獻回顧------------------------------1 1.1遠紅外線材料------------------------------1 1.1.1循環經濟------------------------------1 1.1.2岩石餘料的產生與影響------------------------------4 1.1.3花崗岩------------------------------6 1.1.4大理石------------------------------10 1.1.5電氣石------------------------------13 1.2遠紅外線------------------------------15 1.2.1紅外線的發現、分類與應用------------------------------15 1.2.2紅外線的產生機制------------------------------17 1.2.3氧空缺------------------------------22 1.2.4遠紅外線的生物效應------------------------------26 1.2.5水分子團的細化------------------------------29 1.2.6植物的水分吸收與運輸------------------------------33 1.3放射率------------------------------38 1.3.1何謂放射率------------------------------38 1.3.2放射率的量測方式與認證標準------------------------------39 1.3.3熱處理對放射率的影響------------------------------40 第二章 研究動機------------------------------42 第三章 實驗步驟與原理------------------------------43 3.1藥品與儀器------------------------------43 3.1.1藥品與耗材------------------------------43 3.1.2製程設備與量測儀器------------------------------44 3.2實驗流程------------------------------45 3.3實驗步驟------------------------------46 3.3.1 岩石粉末熱處理------------------------------46 3.3.2 岩石粉末、碳黑、碳管、石墨烯/Epoxy複合材料之製備-----------------47 3.3.3掃描式電子顯微鏡分析(SEM)------------------------------48 3.3.4 X光晶體繞射分析(XRD)------------------------------49 3.3.5傅立葉轉換紅外光譜量測(FTIR)------------------------------49 3.3.6核磁共振光譜量測(NMR)------------------------------50 3.3.7電子順磁共振光譜量測(EPR)------------------------------51 3.3.8 熱成像攝影機量測(FLIR)------------------------------54 3.3.9遠紅外線放射率量測(Emissivity)------------------------------54 第四章 結果與討論------------------------------55 4.1掃描式電子顯微鏡影像(SEM)------------------------------55 4.2 X射線能量散布分析(EDX)------------------------------57 4.3 X光晶體繞射分析(XRD)------------------------------65 4.4傅立葉轉換紅外光譜分析(FTIR)------------------------------67 4.5核磁共振光譜分析(NMR)------------------------------70 4.6電子順磁共振光譜分析(EPR)------------------------------72 4.7熱成像攝影機數據分析(FLIR)------------------------------76 4.8遠紅外線放射率數據分析(Emissivity)------------------------------79 4.8.1岩石粉末壓錠------------------------------79 4.8.2岩石粉末/Epoxy複合材料------------------------------81 4.8.3碳材料/Epoxy複合材料、咖啡渣/陶土複合材料-------------------------82 4.9綠豆種植實驗------------------------------83 第五章 結論------------------------------89

    [1]加速節能環保產業發展邁向綠色循環經濟 台經院文章2016年9月
    [2]https://zh.wikipedia.org/zh-tw/%E5%BE%AA%E7%92%B0%E7%B6%93%E6%BF%9F
    [3]https://www.bankchb.com/chb_2a_resource/leap_do/gallery/1487148728678_68737.pdf
    [4]https://www.packageplus-tw.com/blog/posts/%E5%BE%AA%E7%92%B0%E7%B6%93%E6%BF%9F
    [5]https://green.pidc.org.tw/detail.php?lang=tw&type=2&id=65
    [6]李明美、陳炯立、王義基。石材加工業廢棄物處理與再利用現況。資源化產業資訊專題報導。
    [7]郭志成 (2003) 。花崗石污泥固化再利用。資源與環境學術研討會。花蓮,臺灣。
    [8]吳明修、馮顏權、王蘊中、郭志成。以石材餘料製備遠紅外線材料與其陶瓷製品上之應用。
    [9]臺灣礦業資料室 (1996) 。石灰石、蛇紋石等工業原料礦物篩選尾料 (含邊廢材) 之利用研究經濟部礦業司,臺灣鑛業,頁73-97。
    [10]https://patents.google.com/patent/CN103372498A/zh
    [11]黃兆龍、陳俊村、林義翔 (2012) 。廢棄花崗岩礦泥再利用於高性能混凝土之研究。技術學刊第二十七卷第一期。
    [12]https://zh.wikipedia.org/wiki/%E8%8A%B1%E5%B4%97%E5%B2%A9
    [13]https://zh.wikipedia.org/wiki/%E9%95%BF%E7%9F%B3
    [14]https://czo-archive.criticalzone.org/national/blogs/post/why-should-anyone-care-about-feldspars/
    [15]Robert S. Anderson, Suzanne P. Anderson. “Geomorphology: The Mechanics and Chemistry of Landscapes.”, Cambridge University Press, 2010.
    [16]https://www.nde-ed.org/Physics/Materials/Structure/bonds.xhtml
    [17]https://en.wikipedia.org/wiki/Quartz
    [18]https://zh.wikipedia.org/zh-tw/%E4%BA%91%E6%AF%8D
    [19]https://www.mindat.org/min-6728.html
    [20]Adrian Keller, et.al. “Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation”, The Journal of Chemical Physics 134(10), March 2011.
    [21]https://www.limestone.com/about-us/limestone-learning-center/brief-history-marble/
    [22]https://zh.wikipedia.org/zh-tw/%E5%A4%A7%E7%90%86%E7%9F%B3
    [23]https://zh.wikipedia.org/zh-tw/%E7%9F%B3%E7%81%B0%E5%B2%A9
    [24]https://zh.wikipedia.org/zh-tw/%E6%96%B9%E8%A7%A3%E7%9F%B3
    [25]Chaocai Luo, et.al. “Mechanical Properties of Single-Crystal Calcite and Their Temperature and Strain-Rate Effects.” , Materials 15(13), 2022.
    [26]https://www.mindat.org/min-1304.html
    [27]https://zh.wikipedia.org/zh-tw/%E7%99%BD%E4%BA%91%E7%9F%B3
    [28]https://zh.wikipedia.org/zh-tw/%E9%9B%BB%E6%B0%A3%E7%9F%B3#cite_note-Haw1999-8
    [29]https://www.researchgate.net/figure/Schematic-representation-of-tourmalines-crystal-structure-viewed-normal-A-and-parallel_fig1_281175733
    [30]https://geologyistheway.com/minerals/tourmaline/ [31]https://www.boreas.ca/blogs/piezo-haptics/understanding-the-basics-of-the-piezoelectric-effect?logged_in_customer_id=&lang=tw
    [32]https://www.phys.sinica.edu.tw/~lowtemp/research.htm
    [33]Yafeng Liang, et.al. “A review: Application of tourmaline in environmental fields.”, Chemosphere 281, 2021.
    [34]https://zh.wikipedia.org/wiki/%E7%BA%A2%E5%A4%96%E7%BA%BF
    [35]https://www.aliexpress.com/item/1005004382349084.html
    [36]https://tw.mall.yahoo.com/item/p0930217041566
    [37]https://www.kangfu.com.tw/hardware_overview.php?Sub=36&Item=393
    [38]https://tw.nec.com/zh_TW/news/press/2009/2009051901/2009051901.html
    [39]http://gclie.users.sonic.net/gclie/blackbody.pdf
    [40]https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Jeans_law
    [41]https://en.wikipedia.org/wiki/Wien%27s_displacement_law
    [42]https://blog.udn.com/Automing/163152139
    [43]https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/05%3A_Electrons_in_Atoms/5.07%3A_Spectral_Lines_of_Atomic_Hydrogen
    [44]Christopher Künneth, et.al. “Thermodynamics of Phase Stability and Ferroelectricity From First Principles”, Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, 2019, p.245~289.
    [45]Dhiraj Kumar Rana, Soumen Basu. “Resistive memory device with piezoelectric and ferroelectric thin films by solution synthesis”, Chemical Solution Synthesis for Materials Design and Thin Film Device Applications, 2021, p.679~695.
    [46]K. Eom, et.al. “Oxygen Vacancy Linear Clustering in a Perovskite Oxide”, The journal of physical chemistry letters, 17th July 2017.
    [47]Roser Fernández-Climent, et.al. “The role of oxygen vacancies in water splitting photoanodes”, Sustainable Energy & Fuels, September 2020.
    [48]Yu Huang, et.al. “Synthesis and Applications of Nanomaterials With High Photocatalytic Activity on Air Purification”, Novel Nanomaterials for Biomedical, Environmental and Energy Applications, 2019.
    [49]PHYSICS Textbook for Class XII PART II
    [50]Xiaoyang Pan, et.al. “Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications”, Nanoscale 5(9), March 2013.
    [51]Qingping Wu, et.al. “Creating Oxygen Vacancies as a Novel Strategy To Form Tetrahedrally Coordinated Ti4+ in Fe/TiO2 Nanoparticles”, The Journal of Physical Chemistry C, 28th February 2012.
    [52]林永昇、林明瑜、梁庭繼、廖啟宏、黃琮道、黃暉舜 (2007) 。高效能遠紅外線陶瓷粉末之材料特性與生物效應。科儀新知,第二十八卷六期,頁60-67。
    [53]Yan Liu, Xiaobo Chen. “Semiconductors for Photocatalysis”, Semiconductors and Semimetals, 2017.
    [54]謝鸚爗、林招膨、劉威忠、林群智 (2007) 。遠紅外線在醫學上之應用及其作用機制。台灣應用輻射與同位素雜誌,第三卷三期,頁333-340。
    [55]Martin Chaplin. “Water’s Hydrogen Bond Strength”, Biological Physics, 10th Jun 2007.
    [56]Rong-Yao Yang, et.al. “The resonant heating of heavy water solutions under the terahertz pulse irradiation”, Journal of Molecular Liquids, 229, March 2017, p.148~152.
    [57]Peter Agre. “AQUAPORIN WATER CHANNELS”, Nobel Lecture, 8th December 2003, p.184~207.
    [58]Aquaporin Water Channel
    <https://commons.wikimedia.org/wiki/File:2625_Aquaporin_Water_Channel.jpg>
    [59]Jie Shen, et.al. “Aquafoldmer-Based Aquaporin-like Synthetic Water Channel”, Journal of the American Chemical Society, 6th May 2020.
    [60]【2003諾貝爾化學獎】細胞膜的分子通道<https://teaching.ch.ntu.edu.tw/nobel/2003>
    [61]NNCI. “MOLECULES: Lots of SHAPES and SIZES”, Nanooze, 2012.
    [62]水通道蛋白<https://zh.wikipedia.org/zh-tw/%E6%B0%B4%E9%80%9A%E9%81%93%E8%9B%8B%E7%99%BD>
    [63]吳江隆 (2009) 。食物中和飲用水中水份的小分子團化是廣西巴馬長壽的主要原因。中外醫學研究,第七卷第十三期。
    [64]吳江隆 (2011) 。中國十大長壽之鄉飲食和人體的物理能量特徵。醫學信息,第二十四卷第八期。
    [65]https://zh.wikipedia.org/zh-tw/%E5%B7%B4%E9%A9%AC%E7%91%B6%E6%97%8F%E8%87%AA%E6%B2%BB%E5%8E%BF
    [66]吳江隆發現水合氫鍵能 長壽抑或不再是夢想<https://news.sina.cn/sa/2012-06-22/detail-ikmyaawa3942753.d.html?from=wap>
    [67]活性水合體<https://baike.baidu.com/item/%E6%B4%BB%E6%80%A7%E6%B0%B4%E5%90%88%E4%BD%93/8979514>
    [68]https://www.phyworld.idv.tw/BA_BIO/BOOK_1/PDF/4-1_POINT_ANS.pdf
    [69]https://www.ehanlin.com.tw/app/keyword/%E9%AB%98%E4%B8%AD/%E7%94%9F%E7%89%A9/%E6%A0%B9%E7%9A%84%E7%B6%AD%E7%AE%A1%E6%9D%9F.html
    [70]https://www.ehanlin.com.tw/app/keyword/%E9%AB%98%E4%B8%AD/%E7%94%9F%E7%89%A9/%E5%8D%A1%E6%B0%8F%E5%B8%B6.html
    [71]https://quizlet.com/tw/544641865/%E6%B0%B4%E5%88%86%E5%9C%A8%E6%A0%B9%E9%83%A8%E7%9A%84%E9%81%8B%E8%BC%B8%E8%B7%AF%E5%BE%91-flash-cards/
    [72]https://zh.wikipedia.org/zh-tw/%E7%AE%A1%E8%83%9E
    [73]https://www.ehanlin.com.tw/app/keyword/%E9%AB%98%E4%B8%AD/%E7%94%9F%E7%89%A9/%E5%B0%8E%E7%AE%A1.html
    [74]https://www.teachoo.com/17538/3518/Differentiate-between-tracheid-and-vessels-/category/Teachoo-Questions/
    [75]劉承揚。應用光學講義。國立陽明交通大學生物醫學工程學系。
    [76]熱輻射的特性<https://support.ptc.com › cfd ›CharThermalRadiation>
    [77]蓄熱纖維講義,第八頁。崑山科技大學。
    [78]遠紅外線紡織品驗證規範。紡織綜合研究所。
    [79]陳俊良、陳智成、桂田愛、廖健宏、章哲瑋、黃清盛 (2010) 。電氣石之相變化與熱分解產物之遠紅外線放射率研究。遠東學報,第二十七卷二期,頁183-192。
    [80]Zhao, Y. L., C. B., Li, G., Hu, W. Y., Zhu, L., Wang, X. L., Zhou, B., Liu, J., Zeng, X. Y., &Zhang, T. D. “Effects of tourmaline on growth of three kinds of
    Microorganisms”, African Journal of Biotechnology 11(41), 22th May 2012, p.9732~9740.
    [81]Billeter, M. “Hydration water molecules seen by NMR and by X-ray crystallography”, Progress in nuclear magnetic resonance spectroscopy 27(5), 1995, p.635~645.
    [82]Li, F. Z., Zhang, X. J., & Lv, M. J. “Study on liquid water cluster with 17O NMR”, Acta Scientiae Circumstantiae 24(1), 2004, p.6~9.
    [83]Yi-Ping Wang, PhD thesis‐National Tsing-Hua University Chemistry Institute, Taiwan, 1990.
    [84]Poole, Charles P., Electron spin resonance: a comprehensive treatise on experimental techniques, 2rd. Ed., 1983.
    [85]FLIR紅外線熱像儀入門說明書
    <http://www.pmtweb.com.tw/files/FLIR%E7%B4%85%E5%A4%96%E7%B7%9A%E7%86%B1%E5%83%8F%E5%84%80%E5%85%A5%E9%96%80%E8%AA%AA%E6%98%8E%E6%9B%B8.pdf>
    [86]紅外線熱像儀<https://twcn.rs-online.com/web/p/thermal-imaging-cameras/1368284>
    [87]Stephen E. Kaczmarek, et.al. “Dolomite, Very High-Magnesium Calcite, and Microbes - Implications for the Microbial Model of Dolomitization”, SEPM Special Publications 109, 2017, p.7~20.
    [88]Yu-Xiu Zhang, et.al. “Novel Insights into the Hydroxylation Behaviors of α-Quartz (101) Surface and its Effects on the Adsorption of Sodium Oleate”, Minerals 9(7), July 2019.
    [89]Aditya Kharya, et.al. “New Occurrence of Albitite from Nubra Valley, Ladakh:Characterization from Mineralogy and Whole Rock Geochemistry”, Current Science 111(9), November 2016.
    [90]K.Diouri1, et.al. “Kinetics of yellow dye adsorption onto marble powder sorbents”, Journal of Materials and Environmental Science 6(1), 2015, p.79~92.
    [91]Achile Nana, et.al. “Particles size and distribution on the improvement of the mechanical performance of high strength solid solution based inorganic polymer composites: A microstructural approach”, Materials Chemistry and Physics 267, 15th July 2021.
    [92]Abdelaziz Elgamouz, Najib Tijani. “Dataset in the production of composite clay-zeolite membranes made from naturally occurring clay minerals”, Data in Brief 19, August 2018, p.2267~2278.
    [93]Gila Notesco, et.al. “ Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR) Remote-Sensing Data”, Journal of Remote Sensing 7(9), September 2015.

    QR CODE