研究生: |
吳沛剛 Wu, Pei-Gang |
---|---|
論文名稱: |
提升具有氮化矽/二氧化鋯堆疊電荷儲存層之快閃記憶體元件操作特性研究 Improved Operating Characteristics of Flash Memory Devices with SiN/ZrO2 Stack Trapping Layer |
指導教授: |
張廖貴術
ChangLiao, Kui-Shu |
口試委員: |
趙天生
Chao, Tian-Sheng 李耀仁 Lee, Yao-Ren |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 快閃記憶體 、電荷捕捉式記憶體 、高介電係數材料 、氮化矽工程 |
外文關鍵詞: | ChargeTrapping |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無接面環繞閘極快閃記憶體中,環繞閘極曲率電場增強的效應,使得元件操作速度得以大幅提升。然而,無接面通道中高濃度摻雜,卻使抹除速度面臨瓶頸。在三維結構的記憶體元件使用F-N穿隧抹除的操作方式下,可以藉由材料的特性以及能帶工程,設計電荷儲存層及阻擋氧化層來提升元件抹除特性。
本實驗分為兩個部分,第一部分為快閃記憶體電荷儲存層與阻擋氧化層的堆疊研究。Al2O3對Si有較大的能帶偏移,材料也具有良好的熱穩定性,可以阻擋儲存電荷。而ZrO2對Si有較小的能帶偏移,且具有較高的缺陷密度,能提升元件操作速度。利用Al2O3、ZrO2與SiN組成的電荷儲存層,搭配SiO2與Al2O3組成的阻擋氧化層,可堆疊出適當的結構,增加記憶體元件操作速度。由實驗結果得知在SiN與ZrO2堆疊的電荷儲存層中加入Al2O3無法提升抹除速度。然而,SiO2與Al2O3堆疊的阻擋氧化層則可以減少Al2O3與ZrO2交互反應,進而提升寫入抹除速度。
第二部份為SiN與ZrO2堆疊的電荷儲存層,SiN材料組成對特性影響的研究。由於薄膜成分組成的不同,會影響材料基本特性,缺陷深度也會改變。Si含量的增加可以增加淺缺陷的數量並增加元件操作速度。因此,最佳化的Si含量可以藉由製程參數的調整獲得。實驗結果上,抹除速度因SiN材料中Si的增加而提升。然而,Si含量過高,電荷保持力特性大幅退化。故在SiN電荷捕捉層中適當的Si含量可得到較好的操作特性。
Junctionless Gate-All-Around flash devices operating characteristics can be enhanced by GAA structure, because of GAA curvature electric field enhancement effect. However, high dopant concentration in channel cause memory device difficult to erase. Based on F-N tunneling as operating mechanism in 3D memory devices, erasing speed can be enhanced by design of trapping layer and blocking layer according to material characteristics and bandgap engineering.
The dissertation is divided into two parts as follows. The first part is to investigate the effects of charge trapping layer stack and blocking layer stack on flash memory devices. Al2O3 has high band offset to Si and good thermal stability, it can be applied as a barrier layer of trapped charge. On the other hand, operating speed can be enhanced by ZrO2, because it has smaller band offset to Si and it has higher trap density. Hence, Al2O3, ZrO2 and SiN in trapping layer along with SiO2 in blocking layer can be stacked to improve operation characteristic of flash device. From the experiment results, erasing speed of flash device cannot be enhanced by incorporating Al2O3 into SiN/ZrO2 stack trapping layer. Besides, operation speed of flash device can be enhanced by SiO2/Al2O3 stack blocking layer, because it can reduce the interaction between ZrO2 and Al2O3.
The second part is to investigate the effects of Si content in SiN trapping layer on operating speeds of flash devices. Because thin film characteristics would vary with different atomic composition, energy level of charge traps are also changed with it’s content. As increase of Si content in SiN could increase the amount of shallow trap and enhance operating speed of flash devices. The optimal Si content in SiN for improving operation characteristics of flash device may be obtained by modulating process parameter of SiN formation. From the experiment results, erasing speed can be enhanced by increasing Si content in SiN. However, retention characteristic would be degraded by a high Si content in SiN. Therefore, suitable Si content in SiN trapping layer is needed to retain good operating characteristics.
[1] K. San, C. Kaya, and T. Ma, "Effects of erase source bias on flash EPROM device reliability," Electron Devices, IEEE Transactions, vol. 42, no. 1, pp. 150-159, Jan. 1995.
[2] M. White, D. Adams, and J. Bu, "On the go with SONOS," IEEE Circuits and Devices Magazine, vol. 16, no. 4, pp. 22-31, July 2000.
[3] M. White, Y. Yang, A. Purwar, and M. French, "low voltage SONOS nonvolatile semiconductor memory technology," Nonvolatile Memory Technology Conference, 1996., Sixth Biennial IEEE International, pp. 52-57, Jun. 1996.
[4] J. Bu and M. White, "Retention reliability enhanced SONOS NVSM with scaled programming voltage," Aerospace Conference Proceedings, 2002. IEEE, vol. 5, p. 5–2383 – 5–2390, 2002.
[5] K. Kahng and S. Sze, "A floating gate and its application to memory devices," Electron Devices, IEEE Transactions, vol. 14, no. 9, p. 629, Sep. 1967.
[6] A. Wang and W. D. Woo, "Static magnetic storage and delay line," Journal of Applied Physics, vol. 20, no. 1, pp. 49-54, Jan. 1950.
[7] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, N.J., 2007.
[8] T. Y. Tseng and S. M. Sze, Nonvolatile memory : materials, devices and applications, CA: American Scientific Publishers, 2012.
[9] N. Yamauchi, J. J. Hajjar and R. Reif, "Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film," IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.
[10] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET," IEDM Tech. Dig., pp. 913-916, 2007.
[11] H.Tanaka, M.Kido, K.Yahashi, M.Oomura, R.Katsumata, M.Kito, Y.Fukuzumi, M.Sato, Y.Nagata,Y.Matsuoka, Y.Iwata, H.Aochi and A.Nitayama, “Bit Cost Scalable Technology with Punch and Plug Process,” Symposium on VLSI Technology Digest of Technical Papers, pp. 14-15, 2007.
[12] Y. H. Hsiao, H. T. Lue, T. H. Hsu, K. Y. Hsieh, C. Y. Lu, "A Critical Examination of 3D Stackable NAND Flash Memory Architectures by Simulation Study of the Scaling Capability," Memory Workshop , May 2010.
[13] J. G. Yun, G. Kim, J.E. LEE, Y. Kim, W. B. Shim, J. H. Lee, H. Shin, J. D. Lee, B. G. Park, "Single-Crystalline Si STacked ARray (STAR) NAND Flash Memory," IEEE Transactions on Electron Devices, vol. 58, no. 4, pp. 1006-1014, Apr. 2011.
[14] D. Kang, W. Jeong, C. Kim, D. H. Kim, Y. S. Cho, K. T. Kang, J. Ryu, K. M. Kang, S. Lee, W. Kim, H. Lee, J. Yu, N. Choi, D. S. Jang, C. A. Lee, Y. S. Min, M. S. Kim, A. S. Park, J.I. Son, I. M. Kim, P. Kwak, B. K. Jung, D.S. Lee, H. Kim, "256 Gb 3 b/Cell V-nand Flash Memory With 48 Stacked WL Layers," Journal of Solid-State Circuits, vol. 52, pp. 210 - 217, Jan. 2017.
[15] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, et al., "Scaling of high-k dielectrics towards sub-1nm EOT," VLSI Technology, Systems, and Applications, 2003 International Symposium, pp. 247-250, 2003.
[16] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, "High-k metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett., vol. 25, pp. 408-410, 2004.
[17] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, "MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation," Non-Volatile Semiconductor Memory Workshop, pp. 88-89, 2007.
[18] Y. N. Tan, W. K. Chim, B. Jin Cho, and C. Wee-Kiong, "Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer," Electron Devices, IEEE Transactions, vol. 51, pp. 1143-1147, 2004.
[19] M. K. Bera and C. K. Maiti, "Reliability of Ultra-thin Zirconium Dioxide (ZrO2) Films on Strained-Si," IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 295-300, 2006.
[20] S. Bang, S. Lee, S. Jeon, S. Kwon, W. Jeong,S. Kim, H. Jeon, "Physical and Electrical Properties of Hafnium–Zirconium–Oxide Films Grown by Atomic Layer Deposition," Journal of The Electrochemical Society, vol. 115, no. 9, pp. H633-H637, 2008.
[21] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, "BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability," IEDM Tech. Dig., pp. 547-550, 2005.
[22] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, "A novel SONOS-type flash device with stacked charge trapping layer," Microelectron. Eng., vol. 86, pp. 1863-1865, 2009.
[23] P. H. Tsai, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, M. J. Tsai, "Charge-trapping-type flash memory device with stacked high-k charge-trapping layer," IEEE Electron Device Lett., vol. 30, no. 7, p. 775–777, Jul. 2009.
[24] P. H. Tsai, K. S. Chang-Liao, C. Y. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M.-J. Tsai, "Novel SONOS-type nonvolatile memory device with optimal Al doping in HfAlO charge-trapping layer," IEEE Electron Device Lett., vol. 29, no. 3, p. 265–268, Mar. 2008.
[25] Sandhya C., U. Ganguly, K.K. Singh, P.K. Singh, C. Olsen, S. M. Seutter, R. Hung, G. Conti, K. Ahmed, N. Krishna, J. Vasi, S. Mahapatra, "Nitride engineering and the effect of interfaces on Charge Trap Flash performance and reliability," Reliability Physics Symposium, 2008. IRPS 2008. IEEE International, May 2008.
[26] G. Van den bosch et al., "Nitride engineering for improved erase performance and retention of TANOS NAND Flash memory," Non-Volatile Semiconductor Memory Workshop, May 2008.
[27] E. P. Raynes, C. V. Brown, and J. F. Strömer, "Method for the measurement of the K22 nematic elastic constant," Applied Physics Letters, vol. 82, pp. 13-15, 2003.
[28] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, pp. 225-229, 2010.
[29] R. L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum," Journal of Applied Physics, p. 97, 121301 2005.
[30] S. Tam, P. K. Ko, C. Hu, "Lucky-electron model of channel hot-electron injection in MOSFET'S," IEEE Transactions on Electron Devices, vol. 31, no. 9, p. 1116 – 1125, Sep 1984.
[31] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, "Data retention behavior of a SONOS type two-bit storage flash memory cell," Electron Devices Meeting, 2001. IEDM '01. Technical Digest. International, p. 32.6.1 –32.6.4, 2001.
[32] J. Handy, "How Do You Erase and Program 3D NAND?," 29 Nov 2013. [Online]. Available: http://thememoryguy.com/how-do-you-erase-and-program-3d-nand/#more-782. [Accessed 1 June 2017].
[33] Z. H. Ye, K.S. Chang-Liao, C. Y. Tsai, T.T. Tsai, T. K. Wang, "Enhanced Operation in Charge-Trapping Nonvolatile," IEEE Electron device letters, vol. 33, no. 10, pp. 1351-1353, Oct. 2012.
[34] Y. H. Wu, L. L. Chen, J. R. Wu, M. L. Wu, C. C. Lin, C. H. Chang, "Nonvolatile memory with nitrogen-stabilized cubicphase," IEEE Electron Device Lett., vol. 31, no. 9, p. 1008–1010, sep. 2010.
[35] H. I. Yoo, K. D. Becker, "Effect of hole-trapping on mass/charge transport properties in acceptor-doped BaTiO3," Physical Chemistry Chemical Physics, no. 9, pp. 2069-2073, 2005.
[36] G. D. Wilk, R. M. Wallace, J. M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5274, May 2001.
[37] H.W. You, W.J. Cho, "Charge trapping properties of the HfO 2 layer with various thicknesses for charge," Applied Physics Letters, vol. 96, p. 093506, 2010.
[38] X. D. Huang, R. P. Shi ,Johnny K. O. Sin, P. T. Lai, "Improved Charge-Trapping Characteristics of ZrO2 by Al Doping for Nonvolatile Memory Applications," IEEE Transactions on Device and Materials Reliability, vol. 16, pp. 38-42, March 2016.
[39] T. H. Kim, I. H. Park, J. D. Lee, H. C. Shin, B. G. Park, "Electron trap density distribution of Si-rich silicon nitride extracted using the modified," Applied Physics Letters, vol. 89, pp. 063508-1-3, Jul. 2006.
[40] D. Jiang, Z. Xia, L. Jin, X. Zou, Y. Zhang, Z. Tang, X. Li, Z.Huo, "Analysis of the Retention Characteristic in Three dimensional Junction-less Charge Trapping Memory," ECS Transactions, vol. 72, no. 4, pp. 233-238, 2016.
[41] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, "Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions," Sci. Adv. Mater, vol. 3, pp. 477-482, 2011.