研究生: |
劉宗翰 Liu, Chung-Han |
---|---|
論文名稱: |
用預訓練語言模型進行自動化作文相關性評分 Automatic Essay Relevancy Scoring with Pretrained-Language Models |
指導教授: |
張俊盛
Chang, Jason S. |
口試委員: |
張智星
JANG, JYH-SHING 鍾曉芳 Chung, Siaw-Fong |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 自動作文評分 、深度學習 |
外文關鍵詞: | Automatic Essay Scoring, Deep learning |
相關次數: | 點閱:77 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了自動生成作文題目和學生作文之間相關性分數的方法。我們將作文和題目拆分為句子,然後利用基於預訓練語言模型來學習題目與作文之間的相關性。此方法包括使用語言模型生成句子內嵌向量(embedding),學習這些內嵌向量之間的關係,並用內嵌向量來訓練分類器。在執行時,作文題目和學生作文各自拆分為句子,然後通過層次模型生成最終分數。模型對學生作文評分的表現與人類評分者相當,而且比起基準方法(baseline)相比,有更好的結果。
We introduce a method for automatically generating a relevancy score given a student essay and the essay prompt. In our approach, the essays and prompts are split into sentences. Then we utilize transformer-based pre-trained language models to learn the relevancy between the prompt and the essay. The method involves generating sentence embeddings using sentence transformers, learning the relationships between these embeddings, and training a classifier based on them. At run-time, essays and prompts are broken down into sentences, then passed into a hierarchical model to produce the final score. Blind evaluation on a set of real learner essays shows that it performs comparable to human raters and outperforms the baseline method.
Yigal Attali and Jill Burstein. Automated essay scoring with e-rater® v.2. The
Journal of Technology, Learning and Assessment, 4(3), Feb. 2006. URL https:
//ejournals.bc.edu/index.php/jtla/article/view/1650.
Majdi H. Beseiso and Saleh Alzahrani. An empirical analysis of bert embedding for
automated essay scoring. International Journal of Advanced Computer Science
and Applications, 2020. URL https://api.semanticscholar.org/CorpusID:
229256901.
Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceed-
ings of the ACL Interactive Poster and Demonstration Sessions, pages 214–217,
Barcelona, Spain, July 2004. Association for Computational Linguistics. URL
https://aclanthology.org/P04-3031.
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
33
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners, 2020. URL https://arxiv.org/abs/2005.14165.
Minping Chen and Xia Li. Relevance-based automated essay scoring via hierar-
chical recurrent model. In 2018 International Conference on Asian Language
Processing (IALP), pages 378–383, 2018. doi: 10.1109/IALP.2018.8629256.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.
URL https://arxiv.org/abs/1810.04805.
Kosuke Doi, Katsuhito Sudoh, and Satoshi Nakamura. Automated essay scoring
using grammatical variety and errors with multi-task learning and item response
theory, 2024. URL https://arxiv.org/abs/2406.08817.
Fei Dong and Yue Zhang. Automatic features for essay scoring – an empirical
study. In Jian Su, Kevin Duh, and Xavier Carreras, editors, Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1072–1077, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1115. URL https://aclanthology.org/
D16-1115.
Fei Dong, Yue Zhang, and Jie Yang. Attention-based recurrent convolutional
neural network for automatic essay scoring. In Roger Levy and Lucia Specia,
editors, Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153–162, Vancouver, Canada, August 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/K17-1017. URL
https://aclanthology.org/K17-1017.
34
William Falcon and The PyTorch Lightning team. PyTorch Lightning, March
2019. URL https://github.com/Lightning-AI/lightning.
Zhiwei Jiang, Tianyi Gao, Yafeng Yin, Meng Liu, Hua Yu, Zifeng Cheng, and Qing
Gu. Improving domain generalization for prompt-aware essay scoring via dis-
entangled representation learning. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages 12456–
12470, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.696. URL https://aclanthology.org/2023.
acl-long.696.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013. URL https://arxiv.org/abs/
1301.3781.
Atsushi Mizumoto and Masaki Eguchi. Exploring the potential of using an ai lan-
guage model for automated essay scoring. Research Methods in Applied Linguis-
tics, 2(2):100050, 2023. ISSN 2772-7661. doi: https://doi.org/10.1016/j.rmal.
2023.100050. URL https://www.sciencedirect.com/science/article/pii/
S2772766123000101.
Ellis Batten Page. Project Essay Grade: PEG., pages 43–54. Automated essay
scoring: A cross-disciplinary perspective. Lawrence Erlbaum Associates Pub-
lishers, Mahwah, NJ, US, 2003. ISBN 0-8058-3973-9 (Hardcover).
Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 Conference on Empirical
35
Methods in Natural Language Processing. Association for Computational Lin-
guistics, 11 2019. URL https://arxiv.org/abs/1908.10084.
Jingbo Sun, Tianbao Song, Jihua Song, and Weiming Peng. Improving automated
essay scoring by prompt prediction and matching. Entropy, 24(9), 2022. ISSN
1099-4300. doi: 10.3390/e24091206. URL https://www.mdpi.com/1099-4300/
24/9/1206.
Kaveh Taghipour and Hwee Tou Ng. A neural approach to automated essay
scoring. In Jian Su, Kevin Duh, and Xavier Carreras, editors, Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1882–1891, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1193. URL https://aclanthology.org/
D16-1193.
Yi Tay, Minh C. Phan, Luu Anh Tuan, and Siu Cheung Hui. Skipflow: Incorpo-
rating neural coherence features for end-to-end automatic text scoring. CoRR,
abs/1711.04981, 2017. URL http://arxiv.org/abs/1711.04981.
Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. Minilmv2:
Multi-head self-attention relation distillation for compressing pretrained trans-
formers, 2021. URL https://arxiv.org/abs/2012.15828.
Yongjie Wang, Chuang Wang, Ruobing Li, and Hui Lin. On the use of bert
for automated essay scoring: Joint learning of multi-scale essay representa-
tion. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir
Meza Ruiz, editors, Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
36
Technologies, pages 3416–3425, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.249. URL
https://aclanthology.org/2022.naacl-main.249.
Bokai Yang, Sungjin Nam, and Yuchi Huang. “why my essay received a 4?”: A
natural language processing based argumentative essay structure analysis. In
Ning Wang, Genaro Rebolledo-Mendez, Noboru Matsuda, Olga C. Santos, and
Vania Dimitrova, editors, Artificial Intelligence in Education, pages 279–290,
Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-36272-9.
Ruosong Yang, Jiannong Cao, Zhiyuan Wen, Youzheng Wu, and Xiaodong He.
Enhancing automated essay scoring performance via fine-tuning pre-trained lan-
guage models with combination of regression and ranking. In Trevor Cohn, Yu-
lan He, and Yang Liu, editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 1560–1569, Online, November 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.141.
URL https://aclanthology.org/2020.findings-emnlp.141.
Yupin Yang, Jiang Zhong, Chen Wang, and Qing Li. Exploring relevance and
coherence for automated text scoring using multi-task learning. pages 323–328,
07 2022. doi: 10.18293/SEKE2022-024.