研究生: |
洪嘉駿 Chia-Chun Hung |
---|---|
論文名稱: |
雙饋式感應發電機轉子側電力轉換器控制技術開發與實現 Implementations and Developments of Control Techniques of Rotor Side Converters for Doubly-Fed Induction Generators |
指導教授: |
朱家齊
Chia-Chi Chu 潘晴財 Ching-Tsai Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 雙饋式感應發電機 、轉子側電力轉換器 、廣義磁場導向控制 、定子電壓導向控制 、實虛功控制 、數位訊號處理器 |
外文關鍵詞: | Doubly-Fed Induction Generators, Rotor-side Converter, Generalize Flux Oriented Control, Stator Voltage Oriented Control, Active Power and Reactive Power Control, Digital Signal Processor |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著自然資源的日益枯竭,再生能源有著非常廣闊的前景,雙饋式感應發電機具有優越的穩態和暫態操作性能,且降低所需電力轉換器之額定功率,特別適用於風力發電及抽蓄水力發電等再生能源發電系統。藉由控制轉子電壓的幅值、相位和頻率,可實現雙饋式感應發電機在次同步速度、同步速度及超同步速度下的正常發電運轉,並可藉此控制發電機輸出實功功率及虛功功率,因此採用合適的激磁控制策略是雙饋式感應發電機能夠發揮其良好的調節性能、操作的靈活性及可靠性的關鍵。
本論文主要針對雙饋式感應發電機之轉子側電力轉換器,其應用的向量控制策略進行深入地研究。然而,由於其複雜的動態數學模式,使得一些基本場導向控制特性並未為吾人所充分瞭解,因此本論文首先推導出雙饋式感應發電機之廣義磁場導向控制之動態模型與所需滿足的限制條件,方便統合各種磁場導向控制策略,可看出傳統的轉子磁場導向控制、定子磁場導向控制及氣隙磁場導向控制均為廣義磁場導向控制法之特例,因此有利於開發新型導向控制策略;其次,深入分析向量控制策略應用於雙饋式感應發電機之實現方法,達到實功功率與虛功功率的解耦合控制,再以MATLAB/Simulink模擬驗證其可行性;最後,以數位訊號處理器TMS320F2812為核心,製作一套2.2kW的雙饋式感應發電機雛型系統,以驗證控制技術之正確性。
Due to superior static and dynamic performances and low power ratings of associated power converters, doubly-fed induction generators (DFIG) become a new trend for renewable energy technology, especially for wind and hydro pump-storage power generations. By appropriately controlling the magnitude, phase, and frequency of the rotor voltage phasor, the DFIG can be operated in various operating modes, including sub-synchronous modes, synchronous modes, and super-synchronous modes.
In this thesis, we will focus on the rotor side control of DFIGs. In order to achieve active power and reactive power decoupled control, a generalized flux oriented control will be investigated in details. It can be shown that the conventional stator flux oriented control, rotor flux oriented control, and air-gap flux oriented control are all special cases of the proposed control algorithm. The MATLAB/Simulink simulation platform has been studied for verifying the feasibility and the correctness of the proposed control algorithms. We also developed a 2.2 kW hardware prototype for the DFIG. The TMS320F2812 digital signal processor is utilized for real-time controller implementations. In order to verify the proposed generalized flux oriented algorithms, the hardware DFIG platform test has been conducted under different operating conditions. Measured waveforms demonstrate excellent performances of the proposed control algorithms.
[1] M. S. Vicatos, J. A. Tegopoulos, “Steady state analysis of a doubly-fed induction generator under synchronous operation,” IEEE Transactions on Energy Conversion, Vol. 4, No. 3, pp. 495-501, 1989.
[2] S. Muller, M. Deicke, and R. W. De Doncker, “Doubly fed induction generator systems for wind turbines,” IEEE Industry Applications Magazine, Vol. 8, No. 3, pp. 26-33, May./June. 2002.
[3] R. Gabriel, W. Leonhard, and C. Nordby, “Field-oriented control of a standard ac motor using microprocessors,” IEEE Transactions on Industry Applications, Vol. IA-16, No. 2, pp. 186-192, March. 1980.
[4] R. W. De Doncker and D. W. Novotny, “The universal field oriented controller,” IEEE Transactions on Industry Applications, Vol. 30, No. 1, pp. 92-100, Jan./Feb. 1994.
[5] Y. S. Lai, “Machine modeling and universal controller for vector-controlled induction motor drives,” IEEE Transactions on Energy Conversion , Vol. 18, No. 1, pp. 23-32, March. 2003.
[6] T. A. Raghavendiran, A. S. Saleem, and D. P. Job, ”PC based rotor flux oriented control of induction motors using DSP,” Proceedings of the IEEE International Conference on Power Electronics, Drives & Energy Systems for Industrial Growth, PEDES, Vol. 1, pp. 207-210, Jane. 1996.
[7] G. John, W. Erdman, R. Hudson, C. S. Fan, and S. Mahajan, ”Stator flux estimation from inverter switching states for the field oriented control of induction generators,” IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference. , Vol. 1, pp. 182-188, Oct. 1995.
[8] Peter Vas, Vector Control of AC Machines, New York: Oxford Univ. Press, 1990.
[9] R. Pena, J. C. Clare, and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IEE Proceedings-Electric Power Applications, Vol. 143, No. 3, pp. 231-241, May. 1996.
[10] R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare, “MRAS observer for sensorless control of standalone doubly fed induction generators,” IEEE Transactions on Energy Conversion, Vol. 20, No. 4, pp. 710–718, Dec. 2005.
[11] A. Tapia, G. Tapia, J. X. Ostolaza, and J. R. Saenz, “Modeling and control of a wind turbine driven doubly fed induction generator,” IEEE Transactions on Energy Conversion, Vol. 18, No. 2, pp. 194-204, June. 2003.
[12] M. Yamamoto and O. Motoyoshi, “Active and reactive power control for doubly-fed wound rotor induction generator,” IEEE Transactions on Power Electronics, Vol. 6, No. 4, pp. 624–629, Oct. 1991.
[13] L. Xu and W. Cheng, “Torque and reactive power control of a doubly fed induction machine by position sensorless scheme,” IEEE Trans. on Industry Applications, Vol. 31, No. 3, pp. 636–642, May/Jun. 1995.
[14] J. K. Lung, Y. Lu, W. L. Hung, and W. S. Kao, “Modeling and dynamic simulations of doubly fed adjustable-speed pumped storage units,” IEEE Transactions on Energy Conversion, Vol. 22, No. 2, pp. 250–258, June. 2007.
[15] A. Petersson, L. Harnefors, and T. Thiringer, “Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators,” 2004 IEEE 35th Annual Power Electronics Specialists Conference, Vol. 1, pp. 482-486, 2004.
[16] J. Hu, Y. He, and H. Wang, “Adaptive rotor current control for wind-turbine driven DFIG using resonant controllers in a rotor rotating reference frame,” Journal of Zhejiang University: Science A, Vol. 9, No. 2, pp. 149-155, Feb. 2008.
[17] H. Akagi and H. Sato, “Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system,” IEEE Transactions on Power Electronics, Vol. 17, No. 1, pp. 109-116, Jan. 2002.
[18] Y. Lei, A. Mullane, G. Lightbody, and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies,” IEEE Transactions on Energy Conversion, Vol. 21, No. 1, pp. 257–264, Mar. 2006.
[19] D. W. Novotny and R. D. Lorenz, “Introduction to field orientation and high performance ac drives,” IAS Tutorial Course, 1986.
[20] B. Hopfensperger, D. J. Atkinson, and R. A. Lakin, “Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder, ” IEE Proceedings: Electric Power Applications, Vol. 147, No. 4, pp. 241-250, July. 2000.
[21] G. Poddar and V. T. Ranganathan, “Sensorless field oriented control for double inverter fed wound rotor induction motor drive,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 5, pp. 1089–1096, Oct. 2004.
[22] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 5, pp. 1398–1409, Oct. 2006.
[23] 潘晴財,黃振昌、鄭博泰、黃智方,碳化矽功率轉換器之研發及其在再生能源系統之應用,國科會期中報告,民國96年。
[24] D. W. Novotny and T. A. Lipo, Vector control and dynamics of ac drives, Claredon Press. OXFORD, 1996.
[25] B. K. Bose, Power electronic and ac drives, Prentice-Hall, Englewood Cliffs, 1986.
[26] 邱士芳,「鼠籠式感應電動機之精確最大轉矩導演與分析」,碩士論文,2007年。
[27] H. Huang, Y. Fan, R. Qiu, and X. Jiang, “Quasi-steady-state rotor emforiented vector control of doubly fed winding induction generators for wind-energy generation,” Electric Power Components and Systems, Vol. 34, No. 11, pp. 1201–1211, Nov. 2006.
[28] S. Drid, M. S. Nait-Said, and M. Tadjine, “Double flux oriented control for the doubly fed induction motor,” Electric Power Components and Systems, Vol. 33, No. 10, pp. 1081–1095, Oct. 2005.
[29] G. Poddar and V. Ranganathan, “Sensorless field-oriented control for double-inverter-fed wound-rotor induction motor drive,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 5, pp. 1089–1096, Oct. 2004.
[30] S. Peresada, A. Tilli, and A. Tonielli, “Indirect stator flux-oriented output feedback control of a doubly fed induction machine,” IEEE Transactions on Control Systems Technology, Vol. 11, No. 6, pp. 875–888, Nov. 2003.
[31] Y. Kawabata, E. Ejiogu, and T. Kawabata, “Vector-controlled double-inverter-fed wound-rotor induction motor suitable for high-power drives,” IEEE Transactions on Industry Applications, Vol. 35, No. 5, pp. 1058–1066, Sep. 1999.
[32] Y. Tang and L. Xu, “Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation,” IEEE Transactions on Energy Conversion, Vol. 10, No. 4, pp. 661–668, Dec. 1995.