簡易檢索 / 詳目顯示

研究生: 周暄苹
論文名稱: AlxCoCrFeNi (0 ≤ x ≤ 2)高熵合金之導熱、熱膨脹及導電研究
Thermal conductivity, thermal expansion and electrical conductivity in AlxCoCrFeNi ((0 ≤ x ≤ 2) high-entropy alloys
指導教授: 張一熙
陳瑞凱
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 118
中文關鍵詞: 熱傳導電阻率熱膨脹合金
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研究高熵合金的基礎性質,本實驗選用Al、Co、Cr、Fe與Ni等5個元素,以Al為變量配製非等莫耳AlxCoCrFeNi (0 ≤ x ≤ 2)高熵合金,探討微結構對於導熱(298 K ~ 573 K),熱膨脹(298 K ~ 1073 K)及導電(298 K ~ 400 K)等性質的影響,並了解這些性質的相互關係及高熵合金內原子鍵結排列的情形。
    XRD及SEM的結果顯示,Al變量x增加,使鑄造態合金從FCC結構(0 ≤ xFCC ≤ 0.375)逐漸轉為BCC結構(xBCC ≥ 0.875),中間為兩相區(0.5 □ xduplex □ 0.75)。經均質化水淬後,兩相區的範圍擴大(0.375 < xduplex < 1.25)。由DSC結果可知均質化試片從室溫到773 K間沒有明顯相變化發生,微結構顯示此合金由於高熵效應而有較高的溶解度。
    AlxCoCrFeNi合金的XRD峰值偏低顯示FCC及BCC晶格對XRD的漫射效應較大,電子與聲子間散射較多,相對於純金屬,具有較低的熱傳導係數及導電率。由導熱係數對導電率的比值可知,聲子對熱傳導的貢獻足以與電子的貢獻相匹配;晶格扭曲造成非簡諧震盪偏離中心位置的程度加大,使得溫度升高時晶格膨脹係數變大。
    本研究顯示微結構對許多性質造成影響,Al的原子半徑比Co、Cr、Fe與Ni大了約14.4 %,Al變量增加,合金的XRD峰值降低,漫射效應增大,同時影響單相區及兩相區的合金性質。均質化水淬試片之熱傳導係數及導電率與Al含量的關係大致上分成三區,在單相FCC與單相BCC結構區時,分別皆隨Al增加而降低,主要受電子與晶格的散射效應影響,而兩相區相界多,載子在傳遞過程中比單相結構容易受到阻礙,合金熱傳導係數及導電率均下降。
    鑄造態合金及均質化水淬態合金硬度皆隨Al含量增加而增加,顯示合金鍵結隨Al含量增加而增強,硬度與成分關係大致可分成單相FCC結構區、兩相區及單相BCC結構區。在單相區中硬度雖略有增加,但大抵維持常數;而在兩相區中,隨BCC比例增加,合金硬度幾乎呈線性增加。實驗亦顯示,均質化水淬態合金之BCC相硬度較鑄造態合金之BCC相硬度略微升高,應與均質化水淬態處理過程中,發生之離相分解(Spinodal decomposition)有關。
    均質化水淬態合金之熱膨脹係數隨Al增加而降低,與鍵結強度有關,磁性效應與相變化互相作用,使熱膨脹係數在某一溫度區間產生下降峰。在單相區中隨Al量增多,居禮溫度些微增加(正比於分子場Molecular field強度)。在兩相區中,居禮溫度則有一最低值。


    In order to investigate fundamental properties of high-entropy alloys, this study has selected 5 elements, such as Al, Co, Cr, Fe and Ni, to prepare various AlxCoCrFeNi alloys for 0 □ x □ 2, and to explore the effects of microstructure on the heat conductivity, thermal expansion and electrical conductivity of the alloys in the temperature ranges of 298 – 573 K, 298 – 1073 K, and 298 – 400 K, respectively. Besides, the relation between properties and atomic bonding among elements in the alloys is also explored in this study.
    Experimental results from XRD and SEM show that the microstructure of these alloys is single FCC, duplex FCC + BCC, and single BCC for as-cast alloys (C-alloys) in the composition ranges of 0 □ xFCC □ 0.375, 0.5 □ xduplex □ 0.75, and xBCC □ 0.875, respectively, while the duplex phase area xduplex extends from 0.375 to 1.25 and xBCC □ 1.25 for the homogenized and quenched alloys (H-alloys). DSC analyses show no evidences of phase transformation in the temperature range of 298 to 773 K, indicating that the high-entropy effect makes the alloys more soluble among components in the alloys.
    The XRD peak intensities for H-alloys are lower than those of the pure component elements indicates that FCC and BCC structures in H-alloys have larger scattering effect for x-ray diffraction and more electron-phonon scattering and hence H-alloys have lower thermal and electrical conductivity. The ratio of thermal conductivity to electrical conductivity shows the contribution of phonon is comparable to that of electron in thermal conductivity. The anharmonic oscillation for atoms due to lattice distortion is large. As temperature increases the thermal expansion coefficient increases accordingly.
    This study shows various aspects of microstructural influence on the properties of the alloys. Since the atomic radius of Al is approximately 14.4 % greater than the radii of Co, Cr, Fe and Ni, the increasing amount of Al addition to the alloys decreases the XRD intensities of the alloys. This in turn increases the x-ray scattering in the alloys and influences properties of both single phases and duplex phase of the alloys. The relation of both thermal conductivity and electrical conductivity as a function of the amount of Al addition is seen to divide in three regimes just as that in the case of microstructure, i.e., FCC, FCC + BCC, BCC regimes. In both single-phase regimes, both thermal conductivity and electrical conductivity decrease as the amount of Al, x, increases. In duplex FCC/BCC regime both thermal conductivity and electrical conductivity are smaller than those in single-phase regimes. This is because of the additional scattering effect of FCC-BCC phase boundaries.
    Hardness increases monotonically with x for both C- and H-alloys, indicating that the atomic bonding strength also increases with x. In both single-phase regimes although the hardness increases slightly with x, the hardness keeps roughly constant in single-phase regimes, while the hardness of alloys in the duplex regime increases linearly with x. In BCC regime the hardness for H-alloys is slightly higher than that for C-alloys. This is attributed to the spinodal decomposition during homogenization of H-alloys at 1100 oC.
    The thermal expansion coefficient of H-alloys decreases with x is also attributed to the increase in bond strength as x increases. There are two phase-transformation temperatures for H-alloys in both thermal expansion measurements and DTA analyses. One is for ferromagnetic-to-paramagnetic transition (i.e., Curie temperature,) the other is for □–NiCoCr precipitation that is characterized by HTXRD and DTA. Curie temperature for single-phase H-alloys increases slightly with x, while there is a lower point for Curie temperature for duplex H-alloys. Since Curie temperature is proportional to molecular field in the Weiss theory of magnetism, the molecular field is also closely related to bond strength and microstructure of the alloys.

    摘要 I Abstract III 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第1章 前言 1 第2章 文獻回顧 3 2.1 高熵合金 3 2.1.1 高熵合金的發展 3 2.1.2 高熵合金的特性 4 2.1.3 高熵合金的研究 7 2.2 熱膨脹係數 8 2.2.1 熱膨脹概念 8 2.2.2 熱膨脹係數定義 10 2.2.3 影響熱膨脹係數的因素 14 2.3 電阻率 21 2.3.1 電性簡介 21 2.3.2 合金的電阻率 22 2.3.3 電阻率與溫度關係 26 2.4 熱傳導係數 29 2.4.1 熱傳導簡介 29 2.4.2 聲子熱傳導 30 2.4.3 電子熱傳導 33 第3章 實驗方法 38 3.1 合金成份設計 38 3.2 鑄造態合金製備 43 3.3 微結構觀察 45 3.4 X-ray繞射分析 45 3.5 硬度量測 45 3.6 試片均質化熱處理 46 3.7 DSC量測 46 3.8 熱膨脹係數 46 3.9 電阻率量測 46 3.10 密度量測 47 3.11 熱傳導係數 47 3.12 DTA分析 48 3.13 高溫X-ray繞射(HTXRD) 48 第4章 結果與討論 49 4.1 微結構分析 49 4.2 維氏硬度分析 70 4.3 熱示差掃描(DSC)分析 75 4.4 熱膨脹係數 80 4.5 電阻率量測 91 4.6 熱傳導係數 98 第5章 結論 112 第6章 參考文獻 114

    1. P. K. Huang, J. W. Yeh, T. T. Shun and S. K. Chen, Advanced Engineering Materials 6 (2004) 74
    2. Y. Y. Chen, U. T. Hong, J. W. Yeh and H. C. Shih, Applied Physics Letters 87 (2005) 261918
    3. C. Y. Hsu, J. W. Yeh, S. K. Chen and T. T. Shun, Metallurgical and Materials Transactions A 35 (2004) 1465
    4. Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh and H. C. Shih, Corrosion Science 47 (2005) 2257
    5. Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh and T. Duval, Corrosion Science 47 (2005) 2679
    6. T. K. Chen, M. S. Wong, T. T. Shun and J. W. Yeh, Surface & Coatings Technology 200 (2005) 1361
    7. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin and S. Y. Chang, Metallurgical and Materials Transactions A 36 (2005) 881
    8. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, Advanced Engineering Materials 6 (2004) 299
    9. J. W. Yeh, S. J. Lin, T. S. Chin, J. Y. Gan, S. K. Chen, T. T. Shun, C. H. Tsau and S. Y. Chou, Metallurgical and Materials Transactions A 35 (2004) 2535
    10. M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang and M. H. Chuang, Metallurgical and Materials Transactions A 37 (2006) 1363
    11. T. K. Chen, T. T. Shun, J. W. Yeh and M. S. Hong, Surface & Coatings Technology 188 (2004) 193
    12. C. H. Lai, S. J. Lin, J. W. Yeh and S. Y. Chang, Surface & Coatings Technology 201 (2006) 3275
    13. C. H. Lai, M. H. Tsai, S. J. Lin and J. W. Yeh, Surface & Coatings Technology 201 (2007) 6993
    14. C. H. Lin, J. G. Duh and J. W. Yeh, Surface & Coatings Technology 201 (2007) 6304
    15. 陳韻如, B含量對AlCrNbSiTiVBx氮化物膜機械性質及耐溫性的影響, 國立清華大學材料科學工程研究所 (2007)
    16. Y. A. Chang, Metallurgical and Materials Transactions B 37 (2006) 7
    17. Alloy Phase Diagrams, ASM Handbook, Metals Park, Ohio, 1992
    18. A. Takeuchi and A. Inoue, Materials Transactions 41 (2000) 1372
    19. F. R. de Boer, R. Boom, W. C. M. Martens, A. R. Miedema and A. K. Niessen, Cohesion in Metals, North-Holland, Netherlands, 1988
    20. 陳廷傑, 簡單相高熵合金 AlxCoCrFeNi (0 ≤ x ≤ 2) 之電性質研究, 國立清華大學材料科學工程研究所 (2006)
    21. 鍾宜臻, Co-Ni-Fe-Cr-Mn(Al)合金系列X光繞射強度、硬度、熱傳導及熱膨脹之研究, 國立清華大學材料科學工程研究所 (2007)
    22. M. Shiga, Current Opinion in Solid State & Materials Science 1 (1996) 340
    23. R. E. Taylor, Thermal Expansion of Solids, ASM International, Metals Park, Ohio, 1998
    24. J. D. James, J. A. Spittle, S. G. R. Brown and R.W. Evans, Measurement Science and Technology 12 (2001) R1
    25. D. D. Pollock, Physical properties of Materials for Engineers, Erudition publication Company, Florida, 1985
    26. R. E. Hanneman and H. C. Gatos, Journal of Applied Physics 36 (1965) 1794
    27. P. Hidnert and W. Souder, Thermal expansion of Solids, NBS Circular, 1950
    28. E. W. Lee. Reports on Progress in Physics 18 (1955) 184
    29. F. C. Nix and D. MacNair, Physical Review 60 (1941) 597
    30. Y. Hao, M. Zhao and Y. Zhou, Journal of Applied Physics 98 (2005) 076101
    31. H. Wada and M. Shiga, Journal of Magnetism and Magnetic Materials 104 (1992) 1925
    32. C. Kittel, Introduction to Solid State Physics, Wiley, New York, 2005
    33. L. Solymar and D. Walsh, Electrical properties of materials, Oxford, New York, 2004
    34. P. L. Possiter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press, Cambridge, UK, 1987
    35. G. Wei, An Introduction to Electronic and Ionic Materials, NJ World Scientific Publishing, Singapore, 1999
    36. G. T. Dyos and T. Farrell, Electrical Resistivity Hand Book, Peter Peregrinus Ltd., London, 1992
    37. P. J. Cote and L. V. Meisel, Physical Review Letters 39 (1977) 102
    38. W. M. Star, Physica 58 (1972) 623
    39. W. M. Star, F. B. Basters, G. M. Nap, E. de Vroede and C. van Baarle, Physica 58 (1972) 585
    40. W. M. Star, E. de Vriede and C. van Baarle, Physica 59 (1972) 128
    41. S. Chakraborty and A. K. Majumdae, Journal of Magnetism and Magnetic Materials Transactions 186 (1998) 357
    42. J. E. Parrott and A. D. Stuckes, Thermal conductivity of solids, Pion Ltd., London, 1975
    43. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, New York, 2005
    44. M. C. Karamargin, C. A. Reynolds, F. P. Lipschultz and P. G. Klemens, Physical Review B 6 (1972) 3624
    45. S. Nagarjuna, Bulletin of Materials Science 27 (2004) 69
    46. J. Yang, D. T. Morelli, G. P. Meisner, W. Chen, J. S. Dyck and C. Uher, Physical Review B 65 (2002) 094115
    47. R. Venkatasubramanian, Physical Review B 61 (2000) 3091
    48. W. F. Smith, Structure and Properties of Engineering Alloys (1993)
    49. 吳泰伯, 許樹恩, X光繞射原理與材料結構分析, 中國材料科學學會, 1996
    50. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, Prentice Hall, New Jersey, 2001
    51. J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen and S. J. Lin, Materials Chemistry and Physics 103 (2007) 41
    52. C. J. Yang, W. Y. Lee and S. D. Choi, Journal of Applied Physics 75 (1994) 6655
    53. Kenki Hiraga, Tetsu Ohsuna and Sinya Nishimura, Journal of Alloys and Compounds 325 (2001) 145
    54. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, Massachusetts, 1972
    55. Y. K. Vekilov, E. I. Isaev, B. Johansson, Physics Letters A 352 (2006) 524
    56. HiroyuKi Kitagawa, Mychiko Wakatsuki, Hisanori Nagaoka, Hiroyuki Noguchi, Yukihiro Isoda, Kazuhiro Hasezaki and Yasutoshi Noda, Journal of Physics and Chemistry of Solids 66 (2005) 1635
    57. Alexandra Rudajevova, Denis Vasylyev and Ondrej Musil, Physica B 378 (2006) 758
    58. B. V. Reddy and S. C. Deevi, Intermetallics 8 (2000) 1369
    59. B. Saatci, M. Ari, M. Gunduz, F. Meydaneri, M. Bozoklu and S. Durmus, Journal of Physics: Condensed Matter 18 (2006) 10643

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE