研究生: |
賴建任 Lai, Jian Ren |
---|---|
論文名稱: |
多孔矽蝕刻製成具有光子晶體結構之高靈敏度重金屬檢測器 Porous Silicon Based Photonic-Sensor for High Sensitive Heavy Metal Ion Detecrtion. |
指導教授: |
王本誠
Wang, Pen Cheng 曾繁根 Tseng, Fan Gang |
口試委員: |
魏培坤
Wei, Pei Kuen 林凡異 Lin, Fan Yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 傅立葉紅外光譜儀 、多孔矽蝕刻 、重金屬檢測 、光子晶體 |
外文關鍵詞: | FTIR, Porous silicon etching, heavy metal ion detection, photonic crystal |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水為人類生活中不可或缺的物質,人們生活的聚落大多依靠著水源區而成長。人類的社會不斷的進步從最初的農業社會經過工業革命直到現在,隨著工業與科技的成長人們過著比以往相對富裕的生活。但在工業的蓬勃發展也伴隨著許多環境汙染的產生,例如二氧化碳造成全球暖化、工業排放廢水造成各種形式的水汙染等等。這都漸漸的傷害著我們居住的環境。
在水汙染中的重金屬汙染在70~80年代更是打擊台灣的相關農漁牧業,如砷、鎘、汞、鉛等重金屬汙染。有鑑於此,在本研究目的為製造相關重金屬在水汙染的檢測機制。目前的檢測機制大多利用較昂貴的儀器設備或是利用步驟繁複的化學滴定方式來進行水溶液中的重金屬分析。在本實驗中第一代晶片具有一維光子晶體特性並利用簡便的化學合成及表面修飾使其在傅立葉紅外線光譜儀(FTIR)有檢測重金屬的訊號,並且達到定性與定量的效果。第二代晶片為可見光波段之光子晶體搭配電化學還原將待測金屬離子直接在多孔矽孔洞中析出造成較大的折射率改變,達到增強訊號強度與檢測極限之效果。
Water is essential to human life material, settlement of people's lives as much dependent on the water area and growth. Human society continues to progress from the first agricultural society through the industrial revolution until now, people with the growth of industry and technology have had a relatively affluent life than ever before. But in the booming industry it has been accompanied by a number of environmental pollution produced, such as carbon dioxide cause global warming caused by industrial waste water in various forms of water pollution and so on. This will gradually hurting the environment we live.
The heavy metal pollution in water pollution in 70 to 80 years is relevant agricultural, fishery and animal husbandry against Taiwan, such as arsenic, cadmium, mercury, lead and heavy metal pollution. In view of this, the aim of this study is related to the manufacture of heavy metals in water pollution detection mechanism. The current detection mechanism mostly use the more expensive equipment or the use of complex chemical titration step approach to the analysis of heavy metals in aqueous solution. In this experiment, the first generation of wafer-dimensional photonic crystal having a characteristic and by a simple chemical synthesis and surface modification of it in Fourier infrared spectroscopy (FTIR) for detecting signals of heavy metals, and to achieve qualitative and quantitative results. The second generation of photonic crystal wafer as visible light with a wavelength of electrochemical reduction of metal ions to be measured directly in the porous silicon precipitates hole caused large refractive index change, to enhance the signal strength and the detection limit of the effect.
The first two chapters illustrate the application of this study motive and related experiments. Today introduced the relevant heavy metal detection equipment, introduces the basic principles of photonic crystals with porous silicon etching works. The third and fourth chapters compared with experimental design processes and related process steps. Fifth and sixth chapters, compared with results of the discussions and conclusions. Literature review is included in Chapter VII.
1. Johannes Godt, F.S., Christian Grosse-Siestrup, Vera Esche, Paul Brandenburg, Andrea Reich and David A Groneberg, The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 2006: p. 1-22.
2. Järup, L., Hazards of heavy metal contamination. British Medical Bulletin 2003. 68: p. 167-182.
3. 重金屬檢測方法總則.
4. Torunn.Berg, O.R., ATMOSPHERIC TRACE ELEMENT DEPOSITION: PRINCIPAL COMPONENT ANALYSIS OF ICP-MS DATA FROM MOSS SAMPLES Envirmmental Polhrtion 1995. 88: p. 67-77.
5. Doyle, W.M., Principles and applications of Fourier transform infrared(FTIR) process analysis. 1991.
6. P. Vukusic1*, J.R.S., C. R. Lawrence2 and R. J. Wootton3, Quantified interference and diffraction in single Morpho butterfly scales. The Royal Society, 1999. 266: p. 1403-1411.
7. John, S., Strong localization of photons in certain disordered dielectric superlattices. PHYSICAL REVIEW LETTERS, 1987. 58.
8. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett, 1987. 58: p. 2059.
9. Luan, C.-C.C.P.-G., Photonic Crystals. Wu-Nan culture enterprise, 2005.
10. R. D. Meade, a.J.N.W.J.D.J., Photonic Crystals. Princeton University Press. 2008.
11. Farid A. Harraza, Said M. El-Sheikha, Tetsuo Sakkab, Yukio H. Ogata, Cylindrical pore arrays in silicon with intermediate nano-sizes: A template for nanofabrication and multilayer applications. Electrochimica Acta, 2008. 53: p. 6444-6451.
12. Houk, R.S., Mass spectrometry of inductivity coupled plasmas. ANALYTICAL CHEMISTRY, 1986. 58: p. 97-105.
13. Turner, D.B., Electropolishing silicon in hydrofluoric acid solutions,. Electrochemical Society, 1958. 105.
14. Collins, R.L.S.a.S.D., Porous Silicon Formation Mechanisms. Journal of Applied Physics, 1992. 71: p. 1-22.
15. Gosele, V.L.a.U., Porous Silicon Formation - a Quantum Wire Effect. Applied Physics Letters, 1991. 58: p. 856-858.
16. Canham, A.G.C.a.L.T., Visible-Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon. Nature, 1991. 353: p. 335-338.
17. Huimin Ouyang, M.C., Romain Viard, Benjamin L. Miller, and Philippe M. Fauchet, Macroporous Silicon Microcavities for Macromolecule Detection. Advanced Functional Materials, 2005. 15: p. 1851-1859.
18. Minh-Hang Nguyen , H.-J., Jen-KueiWu, Yi-ShiuanWu Ming-Chang Lee, Fan-GangTseng, Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra. Biosensors and Bioelectronics, 2013. 47: p. 80-85.
19. Nalin H. Maniya, S.R.P., Z.V.P. Murthy, Simulation and fabrication study of porous silicon photonic crystal. Optik, 2014. 125: p. 828-831.
20. VSY Lin, K.M., KPS Dancil, MJ Sailor, MR Ghadiri, A porous silicon-based optical interferometric biosensor. Science, 1997. 278: p. 840-843.
21. Sha Li, J.H.a.L.C., A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology, 2011. 22.
22. Andreas Janshoff, K.-P.S.D., Claudia Steinem, Douglas P. Greiner,, Macroporous p-Type Silicon Fabry-Perot Layers. Fabrication, Characterization, and Applications in Biosensing. J. Am. Chem. Soc, 1998. 120: p. 12108-12116.
23. H. Mabuchi, Q.A.T., M. S. Chapman, and H. J. Kimble, Real-time detection of individual atoms falling through a high-finesse optical cavity. Optics Letters, 1996. 1996: p. 1393-1395.
24. Andreas Janshoff , K.-P.S.D., Claudia Steinem , Douglas P. Greiner ,, Macroporous p-Type Silicon Fabry-Perot Layers. Fabrication, Characterization, and Applications in Biosensing. J. Am. Chem. Soc, 1998. 120: p. 12108-12116.
25. Jung-Chul Lee, J.Y.A.a.-W.K., Application of anodized aluminium oxide as a biochip substrate for a Fabry–Perot interferometer. Journal of Chemical Technology and Biotechnology, 2007. 82: p. 1045-1052.
26. Simonescu, C.M., Application of FTIR Spectroscopy in Environmental Studies.
27. 陳志恆.吳柏昌, 可調式液晶與光子晶體複合結構的光電特性與應用.