簡易檢索 / 詳目顯示

研究生: 謝惠菁
Hsieh, Hui-Ching
論文名稱: 自主性區域感測網路中以協議問題為基礎之容錯機制之研究
Consensus Problem Based Fault-Tolerance Scheme for an Autonomous Local Sensor Network
指導教授: 石維寬
Shih, Wei-Kuan
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 75
中文關鍵詞: 拜占庭協議無線感測網路區域自主性容錯能力
外文關鍵詞: Byzantine Agreement, WSN, Autonomous, Consensus
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微型製造技術、通訊技術、電池與網際網路科技的迅速發展,使得微小型的感測器(sensor node)具備了感應、無線通訊與資料處理的能力,並促進了無線感測網路的蓬勃發展。基本上,一個無線感測網路是由多個感測器及一個資料收集中心(sink)所組合而成的,在此網路架構中,感應器負責觀測所在環境中的事件,並以無線傳輸的方式將所觀測到的各項資訊傳送至資料收集中心,當感測器與資料收集中心無直接相互溝通的能力時,感測器就必須仰賴多跳躍(multi-hop)技術來完成資料傳遞的工作。而資料收集中心則必須處理、分析所收到之訊息並做出適當的決策動作。
    綜觀上述的無線感測器環境,有幾個問題是我們需要探討的:首先,資料收集中心需處理、分析各項資訊,並決定相關的決策結果與行動,因此資料收集中心在此網路架構中扮演著重要的角色。然而,當此資料中心發生錯誤或損毀時,整個網路架構相關的資料分析、決策動作亦將隨之停擺。除此之外,當感測器未能與資料中心直接傳遞訊息時,雖可透過多跳躍技術傳遞相關訊息,但此技術將會產生一些額外的訊息傳遞時間,這對於一個講求時效性的環境,例如火災感應的環境來說,是較不適合的。最後,在網路中,每一個感測器可能會因為電力不足的問題,使其無法感應或發送訊息,亦或是遭到外力破壞,導致感測器損壞而發出錯誤訊息至資料收集中心,除此之外,感測器是透過無線傳輸的方式與其它感測器或資料收集中心聯繫,當其無線傳輸過程中遭到干擾或惡意破壞,皆有可能影響資訊傳遞的正確性。
    為解決上述問題,在此我們將感測器分散於各個位於室內區域環境中,而位於同一區域之感測器皆具有其自主性,並結合分散式環境中著名的容錯演算法:協議問題技術,讓各區域內的感測器能自行感測事件並共同決議相關之決策或行動。
    本論文將分別討論當傳輸媒介損毀、感測器損毀以及此兩種元件同時損毀的狀況下,每一個正常運行的感測器如何彼此合作而達成協議。換句話說,在此環境中,所有之感測事件、結果與最後之決策行為皆可由各個區域性內的感測器共同決定,而不再需要資料收集中心的協助,因此能解決資料收集中心單點錯誤的問題。再者,由於感測器已分散在各個較小的區域性環境中,在同一區域內的感測器可直接溝通,因此可減少多跳躍式方式所產生的訊息交換時間。


    A traditional WSN is composed of several sensor nodes and a centralized sink. The sink analyzes data measured by the distributed sensor nodes and takes appropriate actions. A problem with this kind of architecture is that it may have a single-point of failure. Also, sensor nodes are not connected directly to the sink and must send data by hopping scheme through other sensor nodes. This means that it would take more time for the sink to collect data. Furthermore, in a WSN, faulty sensor nodes or noise may distort the message during transmission. An intruder may also alter the message maliciously. So far, there has been little research done on the design of robust WSN to overcome the single-point of failure problem and environmental interference. In this thesis, we propose a consensus problem algorithm based solution to enhance the accuracy of the detected result in an indoor autonomous local sensor network without a centralized sink. Under our scheme, there is no need to send the detected values to the sink. The solution can therefore reduce the transmission and routing time, allowing appropriate action to be made directly and quickly.

    中文摘要 III Abstract V Table of Contents VI List of Figures VIII Chapter 1 Introduction 1 1.1 Introduction of the Sensor Network 1 1.2 Research Motivation 4 Chapter 2 Related Works 8 2.1 Literature Survey 8 2.2 Byzantine Agreement Problem 11 2.3 The Consensus Problem 12 Chapter 3 System Model 14 Chapter 4 TWSN:The Case of Transmission Media Fault Only 17 4.1 The Message Exchange Phase 18 4.2 The decision making phase 19 4.3 Example 19 4.4 Correctness and Complexity 23 4.4.1 Correctness 23 4.4.2 Complexity 27 4.5 Summary 28 Chapter 5 SWSN:The Case of Sensor Fault Only 30 5.1 The message exchange phase 31 5.2 The Decision Making Phase 32 5.3 Example 35 5.4 Correctness and Complexity. 38 5.4.1 Correctness 38 5.4.2 Complexity 41 5.5 Summary 43 Chapter 6 GWSN:The General Case 44 6.1 Removing the faulty components 44 6.2 The proposed protocol 48 6.2.1 The Message Exchange Phase 49 6.2.2 The Decision Making Phase 50 6.3 Example 51 6.4 Correctness and Complexity 58 6.4.1 Correctness 58 6.4.2 Complexity 64 6.5 Summary 65 Chapter 7 Conclusion and Future Works 67 7.1 Conclusion 67 7.2 Future works 68 Bibliography 69 Appendix – Abbreviation List 75

    [1] A. Bar-Noy, D. Dolev, C. Dwork and R. Strong, “Shifting Gears: Changing Algorithms on the Fly to Expedite Byzantine Agreement,” Proceedings of the 6th annual ACM Symposium on Principles of Distributed Computing, pp. 42-51, 1987.
    [2] A. Boukerche, A. Martirosyan and R. Pazzi, "An inter-cluster communication based energy aware and fault tolerant protocol for WSN," ACM Transaction on Mobile Network Application, vol. 13, no. 6, pp. 614-626, Dec. 2008.
    [3] A. E. Rhazi and S. Pierre, "A Tabu search algorithm for cluster building in WSN," IEEE Transactions on Mobile Computing, vol. 8, no. 4, pp. 433-444, Apr. 2009.
    [4] A. Gopakumar and L. Jacob, “Localization in WSN using Particle Swarm Optimization,” IET International Conference on Wireless, Mobile and Multimedia Networks, pp. 227-230, 2008.
    [5] A. Mainwaring et al., “WSN for Habitat Monitoring,” First ACM Workshop on WSN and Applications, 2002.
    [6] B. Krishnamachari, D. Estrin and S. Wicker, "Modelling data-centric routing in WSN," IEEE INFOCOM, 2002.
    [7] Bulusu et al., “Scalable Coordination for WSN: Self-Configuring Localization Systems,” ISCTA 2001, Ambleside, U.K., July 2001.
    [8] C. Intanagonwiwat, R. Govindan and D. Estrin, "Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks," in Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 56-67, August, 2000.
    [9] C. Jaikaeo, C. Srisathapornphat and C.-C. Shen, “Diagnosis of sensor networks,” IEEE International Conference on Communications, pp. 1627-1632, 2001.
    [10] C. Liu, K.Wu and J. Pei, “A dynamic clustering and scheduling approach to energy saving in data collection from WSN,” In Proceeding of the Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON 2005), Santa Clara, California, September 2005.
    [11] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next Century Challenges: Scalable Coordination in Sensor Networks,” Proceeding of the IEEE/ACM MobiCom Conference, pp. 263-270, 1999.
    [12] D.N. Jayasimha, “Fault tolerance in a multisensor environment,” in proceeding of Reliable Distributed Systems, pp. 2-11, 1994.
    [13] F. Halsall, “Data Communications, Computer Networks and Open Systems,” 4th. Ed., (Addison-Wesley Publishers Ltd.,), pp. 112-125, 1995.
    [14] F. Y. Luo, H. S. Lu and L. Zhang, “Statistical en-route filtering of injected false data in sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 839-850, 2005.
    [15] G. Pottie and W. J. Kaiser, “WSN,” Communications of the ACM, vol. 43, pp. 51-58, 2004.
    [16] G. Wang, W. Zhang, G. Cao and T. La Porta, “On Supporting Distributed Collaboration in Sensor Network,” in: Proceeding of IEEE Military Communication Conference pp. 752-757, 2003.
    [17] H. Karl and A. Willig, “Protocols and Architectures for WSN,” John Wiley and Son, Ltd., 2005.
    [18] I. Bekmezci and F. Alagoz, “Energy Efficient, Delay Sensitive, Fault Tolerant WSN for Military Monitoring,” Sensors Applications Symposium, SAS 2008. IEEE, pp. 172-177, 2008.
    [19] I. F. Akyildiz, W. Su, Y. Sankasubramaniam and E. Cayirci, “A survey on Sensor Networks,” IEEE Communication Magazine, vol. 40, no. 8, pp. 102-114, 2002.
    [20] J. S. Leu and H. C. Hsieh, “An Autonomous WSN with Fault Resilience,” The 4th IEEE International Conference on Wireless and Mobile Computing, Networking and communication (WiMob 2008), pp. 223-227, 2008.
    [21] J. S. Leu, H. C. Hsieh and W. K. Shih, “Robustness Improvement in an Autonomous Sensor Network by the Consensus,” in: Proceeding of the Fourth Workshop on Wireless Ad Hoc and Sensor Networks (WASN 2008), pp. 376-379, 2008.
    [22] K. Chakrabarty and S. S. Iyengar, “Scalable Infrastructure for Distributed Sensor Networks,” Springer-Verlag New York, Inc., 2005.
    [23] K. Marzullo, “Tolerating failures of continuous-valued sensors,” ACM Transactions on Computer Systems, vol. 8, no. 4, pp. 284 - 304 , 1990.
    [24] K. Q. Yan, Y, H. Chin and S. C. Wang, “Optimal Agreement Protocol in Malicious Faulty Processors and Faulty Links,” IEEE Transactions on Knowledge and Data Engineering, vol. 4, no. 3, pp. 266-280, 1992.
    [25] K. Q. Yan, S. C. Wang and Y. H. Chin, “Consensus under Unreliable Transmission,” in Information Processing Letters, vol. 69, pp. 243-248, 1999.
    [26] L. Lamport and P. Melliar-Smith, “Byzantine Clock Synchronization,” in: ACM 3rd PODC Conference Proceeding, pp. 10-16, 1984.
    [27] L. Lamport, R. Shostak and M. Pease, “The Byzantine Generals Problem,” ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382-401, 1982.
    [28] M. Fischer and N. Lynch, “A Lower Bound for the Assure Interactive Consistency,” Information Processing Letters, vol. 14, no. 4, pp. 183-186, 1982.
    [29] M. Ghelichi, S. K. Jahanbakhsh and E. Sanaei, "RCCT: Robust Clustering with Cooperative Transmission for Energy Efficient WSN," in Proc. IEEE ITNG'08, Feb. 2008.
    [30] M. Pease, R. Shostak and L. Lamport, “Reaching Agreement in Presence of Faults,” Journal of ACM, vol. 27, no. 2, pp. 228-234, 1980.
    [31] N. Bouabdallah, M. E. Rivero-Angeles and B. Sericola, “Continuous Monitoring Using Event-Driven Reporting for Cluster-Based WSN,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3460-3479, 2009.
    [32] P. Chew and K. Marzullo, “Masking Failures of Multidimensional Sensors,” in proceeding of Reliable Distributed Systems, pp. 32-41, 1991.
    [33] R. Klempous, J. Nikodem, L. Radosz and N. Raus, “Byzantine Algorithms in Wireless Sensors Network,” International Conference on Information and Automation, pp. 319 – 324, 2006.
    [34] R. Szewczyk et al., “Lessons from a Sensor Network Expedition,” First European Workshop on WSN, 2004.
    [35] S. A. Aldosari and J. M. F. Moura, “Detection in Sensor Networks: The Saddlepoint Approximation,” IEEE Transaction on Signal Processing, vol. 55, no. 1, pp. 3247-340, 2007.
    [36] S. C. Wang, K. Q. Yan and G.Y. Zheng, “Dual Agreement Virtual Subnet Protocol for Mobile Ad-hoc Networks,” in: The 22nd Annual ACM Symposium on Applied Computing, pp. 953-954, 2007.
    [37] S. C. Wang, K.Q. Yan and M.L. Chiang, “Optimal Agreement in a Scale-Free Network Environment,” International Journal of Informatica, vol. 17, no. 1, pp. 137-150, 2006.
    [38] S. C. Wang, K. Q. Yan and M. L. Chiang, “Reliable Decision in an Un-Safely Distributed Environment,” the International Conference on Systems Engineering, 2002.
    [39] S.C. Wang, M.L. Chiang, K.Q. Yan and K.F. Jea, “Streets of Consensus under Unknown Unreliable Network,” ACM Operating Systems Review, vol. 39, no. 4, pp. 80-96, 2005.
    [40] S.C. Wang, S.C. Yang and K.Q. Yan, “Consensus in a Dual Fallible Scale Free Network,” in: IEEE Wireless Communications and Networking Conference, 2007.
    [41] S. C. Wang, Y. H. Chin and K. Q. Yan, “Byzantine Agreement in a Generalized Connected Network,” IEEE Transactions on Parallel and Distributed System, vol. 6, no. 4, pp. 420-427, 1995.
    [42] S. Marti, T. J. Giuli, K. Lai and M. Baker, “Mitigating routing misbehavior in mobile ad hoc networks,” ACM MobiCom, pp. 255–265, Aug. 2000.
    [43] S. Tanachaiwiwat and A. Helmy, “Correlation analysis for alleviating effects of inserted data in WSN,” in Proc. Mobile and Ubiquitous Syst.: Networking Services, pp. 97–108, 2005.
    [44] T. Hoang and M. Motani, “Collaborative broadcasting and compression in cluster-based WSN,” ACM Transactions on Sensor Networks, vol. 3, no. 3, p. 17, 2007.
    [45] T. Palpamas, “Distributed Deviation Detection in Sensor Networks,” in: Proceeding of ACM SIGMOD, vol. 32, no. 4, pp. 77-82, 2003.
    [46] U. N. Okorafor and D. Kundur, “On the Relevance of Node Isolation to the K-Connectivity of Wireless Optical Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 8, no. 10, pp. 1427-1440, 2009.
    [47] V. Chatzigiannakis and S. Papavassiliou, “Diagnosing Anomalies and Identifying Faulty Nodes in Sensor Networks,” IEEE Sensors Journal, vol. 7, no. 5, pp. 637-647, 2007.
    [48] W. Li and H. Dai, “Cluster-based distributed consensus,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 28-31, 2009.
    [49] W. R. Heinzelman, A. Chandraksan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000.
    [50] W. Ye, J. Heidemann and D. Estrin, “An Energy-Efficient MAC Protocol for WSN’ In Proceedings of the IEEE Infocom, pp. 1567-1576, 2002.
    [51] X. H. Hao, K. Yi and Y. H. Wang, "Geographical-based multihop clustering algorithm for distributed WSN," in Proc. IEEE WCICA'08, Jun. 2008.
    [52] X. Wang, J. Ma, S. Wang and D. Bi, “Distributed Energy Optimization for Target Tracking in WSN,” IEEE Transactions on Mobile Computing, vol. 9, no. 1, pp. 73-86, 2010.
    [53] Y. Xu, J. Heidemann and D. Estrin, “Geography-informed Energy Conservation for Ad Hoc Routing,” in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 70-84, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE