簡易檢索 / 詳目顯示

研究生: 許勝裕
Hsu, Shen-Yu
論文名稱: 奈米金屬線結構在光電元件之研究與應用
Optical Properties of Metallic Nanowires and Their Applications in Photonic Devices
指導教授: 李明昌
Lee, Ming-Chang M.
魏培坤
Wei, Pei-Kuen
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 近場光學表面電漿波導雙折射率有機光電元件
外文關鍵詞: Near field optics, Surface plasmon waveguide, Birefrigence, Organic light emitting device, OLED
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This dissertation contains the studies and applications for three kinds of nanoscale metallic wire structures. The first one is the studies of subwavelength dielectric-loaded surface plasmon polariton (DLSPP) waveguides by using a near-field scanning optical microscopy combined with a high numerical aperture (N.A.) optical microscope. We verified the existence of anti-symmetrical mode single-mode in the DLSPP waveguide and observed different propagation properties of SPPs when the light source is launched at different positions near the waveguide entrance. The second one is the polarization studies of subwavelength Au nanoslits. A giant form-birefringence larger than one is induced due to surface plasmon polaritons (SPPs) in gold nanoslit arrays. The last one is the applications of Au Nanowires array for enhancing the light extraction of light emitting devices.
    The optical fiber tip which is widely used in near field scanning optical microscopy (NSOM) was employed to generate the surface plasmon wave (SPW) at the entrance of the DLSPP waveguide. Comparing with conventional end-fire coupling, the near-field has a higher spatial resolution and more broadband angular spectrum (in Fourier space). Besides, a high N.A. microscope can observe the radiation of DLSPP waveguide, and the optical images were collected by charge coupling devices (CCD). Previous research reported that there are symmetric and antisymmetric modes supported in the insulator-metal-insulator (IMI) waveguide. This thesis is the first one to experimentally confirm the antisymmetric modes. Furthermore, the NSOM and high N.A. microscope were employed to excite and observe, respectively, the bending DLSPP waveguides (L-shape). The results show the SPW can make a 90o turn in the bending waveguides at the special excitation region.
    Large phase differences between transverse electric (TE) and transverse magnetic (TM) waves were investigated in plasmonic nanoslit arrays. The phase of the TE wave shifts ahead because of its low propagation constant. On the other hand, the phase of the TM wave is retarded due to the propagation of surface plasmons. The opposite phase shift forms a giant birefringence. The results show that its magnitude is dependent on the width of nanoslits. The birefringence magnitude was ~1 for 300-nm-wide nanoslits and up to ~2.7 for 100 nm ones (the world record was 1 in 2008). Besides, the spectroscopic measurements indicate that waveplates made of gold nanoslits have large bandwidths.
    This dissertation also demonstrates the extraction efficiency enhancement of organic light emitting devices by fabricating Au nanowires on the indium tin oxide (ITO) anode. For the aluminum-tris-(8-hydroxyquinoline) (Alq3) base devices, a 100 nm-width and 450 nm-period gold nanowire array increases light extraction up to 46% from glass substrate and 80% from the organic layer. Such metallic nanowire arrays can double the brightness with small absorption, only 10% lower than ITO-coated glass. In addition, the colors extracted by the nanowires can be selected by the period of nanowire array. We extracted blue to red light extraction by using single Alq3-based device.


    本論文的主題為奈米金屬波導之研究與應用,在內文中探討了三種不同光在奈米金屬波導中的傳播行為與光學特性。首先,我利用近場光學顯微術結合洩漏模式光學顯微術來研究光在介電負載的表面電漿波導的模態。接下來,我們發現當光傳透過奈米尺度的金屬狹縫,會引發巨大雙折射性質。這個特別的光學特性,無論在我們理論的計算或是實驗的驗證中都擁有很好的一致性,同時我們也得到一個巨大雙折射率差高達2.7(2008年的世界紀錄是1)。最後在本論文中,我們利用週期性的奈米金線的區域化表面電漿共振引發的高散射能力去增加有機發光元件的出光效率。
    首先,我們利用近場光學的光纖探針去產生表面電漿子波,進而激發數百奈米寬的通道式光學電漿子波導。相較於傳統的直接耦合激發,近場激發不僅具有較高的空間解析度,而且在富氏空間具有較寬的角度頻譜。在此,漏模式光學顯微術幫助我們直接觀察光在介電負載的表面電漿波導傳播的情形,同時也利用電荷耦合元件取得影像。在1986年的文獻中首度指出,在介電質-金屬-介電質類型的波導中存在著對稱性與非對稱性的傳播模態。到目前為止,只有對稱模態被人類所觀察且應用,但是非對稱模態至今只在理論的計算上被實現,本論文是第一個在實驗上證明非對稱模態。在研究中,一些特別的干涉現象成功地被發現,而且這發現在實驗上證明了非對稱性的傳傳播模態存在。除此之外,這個近場激發的裝置也被應用來研究表面電漿波導的轉彎特性。結果顯示只要在特定的位置激發,被激發的表面電漿子波的確可以在L型波導中作垂直的轉彎。
    除此之外,在研究中我們發現當一道橫向電場跟一道橫向磁場的光同時穿透過一個週期性的奈米狹縫,此兩道光可以造成一個相位差。橫向電場的光相位會超前橫向磁場的相位,因為橫向磁場會引發表面電漿,使得傳播常數變大造成相位延遲,而這個相位延遲便會形成光學的複折射性質。在研究中,我們發現這個複折射性質跟狹縫寬度有直接的相關,當狹縫寬度為300奈米時,引發的複折射係數為~1,但是當狹縫寬度增少至100奈米時,所引發的複折射係數高達~2.7。此外,在光譜的量測中,利用奈米金狹縫所製成的1/4波長板具有很大的使用頻寬。
    最後在這本論文中,利用週期性的奈米金線引發的區域化表面電漿共振效應所產生的高散射能力,增加發光元件的出光效率達一倍的亮度。除此之外,本研究還發現,藉由調變金線的週期還可以控制不同的顏色的光被取出,在這類型的元件中,從藍色到紅色皆可以順利地被取出。針對於Alq3系列的元件,以100奈米寬,450奈米週期的週期性金線陣列,可以從玻璃基板中多取出46%的光子,從有機材料中取出80%的光子。

    Contents Abstract i 中文摘要 iii Contents vi List of Figures viii Chapter 1 Introduction and Motivation 1 1.1 Introduction to surface plasmon waveguides 2 1.2 Introduction to extraordinary transmission of light through metallic nanostructures 9 1.3 Introduction to localized surface plasmons 13 1.4 Motivations 15 Chapter 2 Theories for SPP Waveguides and Principals of Excitation Method 18 2.1 Surface plasmon polaritons propagation 19 2.2 Surface plasmon in multilayer systems 23 2.3 Localized surface plasmon 28 2.4 Excitation of SPPs 33 2.4.1 Prism coupling 33 2.4.2 Grating coupling 35 2.4.3 Near field excitation 37 Chapter 3 Sample Fabricatiion and Experimental Setup 42 3.1 Sample fabrication 42 3.1.1 Fabrication of Au nanowire arrays 42 3.1.2 Fabrication of OLEDs 45 3.1.3 Fabrication of Plasmonic waveguides 46 3.2 Experimental Setups 49 3.2.1 Collection mode near field scanning optical microscopy 49 3.2.2 Near field excitation 52 Chapter 4 Using Near-field Excitation to Study the Guiding Mode Supported by Dielectric-loaded Surface Polariton Waveguides 54 4.1 The propagations of dielectric loaded SPPS waveguide 55 4.2 The wave guided in DLSPP waveguide bends 61 Chapter 5 Giant birefringence induced by plasmonic nanoslit arrays 65 5.1 Background 65 5.2 Propagation constant for TE and TM polarization in Au nanoslit arrays 69 5.3 Optical field distribution for TE and TM polarization in Au nanoslit array 72 5.4 The measurement of relative phase shift between TE and TM polarization 75 5.5 Crossed polarizer measurements 79 Chapter 6 Extraction efficiency enhancement in OLED by using nanowires arrays 85 6.1 Background 85 6.2 Scattering of Au nano structure 90 6.3 Extraction of glass substrate mode 91 6.4 Extraction of high index guiding mode 94 Chapter 7 Conclusions and Future Work 97 References 99

    1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    2. A. D. H. J. Lezec, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    3. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, New York, 2001).
    4. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
    5. S. Park, and S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electronics Letters 42, 402-404 (2006).
    6. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Optics Communications 244, 455-459 (2005).
    7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Applied Physics Letters 85, 5833-5835 (2004).
    8. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Optics Express 13, 4674-4682 (2005).
    9. H.-S. Lee, Y.-T. Yoon, S.-s. Lee, S.-H. Kim, and K.-D. Lee, "Color filter based on a subwavelength patternedmetal grating," Opt. Express 15, 15457-15463 (2007).
    10. J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, "Polarization dependent transmission through asymmetric C-shaped holes," Applied Physics Letters 94, 081102 (2009).
    11. K. L. Lee, W. S. Wang, and P. K. Wei, "Sensitive label-free biosensors by using gap plasmons in gold nanoslits," Biosens. Bioelectron. 24, 210-215 (2008).
    12. P. K. Lin, K. H. Lin, C. C. Fu, K. C. Lee, P. K. Wei, W. W. Pai, P. H. Tsao, Y. L. Chen, and W. S. Fann, "One-Dimensional Dynamics and Transport of DNA Molecules in a Quasi-Two-Dimensional Nanoslit," Macromolecules 42, 1770-1774 (2009).
    13. K.-H. Lee, Y.-D. Su, S.-J. Chen, F.-G. Tseng, and G.-B. Lee, "Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay," Biosensors and Bioelectronics 23, 466-472 (2007).
    14. E. a. R. Kretschmann, H., "Radiative decay of non-radiative surface plasmons excited by light.," light. Z. Naturforschung 23A, 2135-2136 (1968).
    15. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection.," Z. Physik 216, 398-410 (1968).
    16. E. Devaux, Ebbesen, ThomasW.,Weeber, Jean-Claude, and Dereux, Alain, "Launching and decoupling surface plasmons viamicro-gratings," Appl. Phys. Lett. 83, 4936-4938 (2003).
    17. J.-C. Weeber, Y. Lacroute, and A. Dereux, "Optical near-field distributions of surface plasmon waveguide modes," Physical Review B 68, 115401 (2003).
    18. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Applied Physics Letters 88, 094104 (2006).
    19. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    20. C. J. Bouwkamp, "On Bethe’s theory of diffraction by small holes.," Philips Research
    Reports 5, 321-332 (1950).
    21. C. J. Bouwkamp, "On the diffraction of electromagnetic waves by small circular disks
    and holes.," Philips Research Reports 5, 401-422 (1950).
    22. T. Thio, Pellerin, K. M., Linke, R. A., Lezec, H. J., and Ebbesen, T. W., "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    23. R. a. B. Gordon, Alexandre G., "Increased cut-off wavelength for a subwavelength hole in a real metal.," Opt. Express 13, 1933-1938 (2005).
    24. A. Degiron, Lezec, H. J., Yamamoto, N., and Ebbesen, T. W., "Optical transmission properties of a single subwavelength aperture in a real metal," 239, 61-66 (2004).
    25. R. H. Doremus, "Optical properties of small gold particles," J. Chem. Phys 40, 2389-2396 (1964).
    26. Y. W. C. R. C. Jin, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms.," Science 294, 1901-1903 (2001).
    27. P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Physical Review B 6, 4370 (1972).
    28. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Physical Review B 33, 5186 (1986).
    29. D. Sarid, "Long-Range Surface-Plasma Waves on Very Thin Metal Films," Physical Review Letters 47, 1927 (1981).
    30. S. Park, Lee, Gwansu, Song, Seok Ho, Oh, Cha Hwan, and Kim, Phill Soo, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003).
    31. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local Excitation, Scattering, and Interference of Surface Plasmons," Physical Review Letters 77, 1889 (1996).
    32. J. W. Goodman, Introduction to Fourier Optics, Physical and Quantum Electrics Series (McGraw-Hill, New York, 1968).
    33. E. Betzig, and J. K. Trautman, "Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-194 (1992).
    34. P.-K. W. a. Y.-C. Chen, "Etching method for fabricating high quality optical fiber probe," U. patent, ed. (US patent US 6,905,627B2, 2005).
    35. B. F. Yun, G. H. Hu, and Y. P. Cui, "Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides," Optics Express 17, 3610-3618 (2009).
    36. A. Bouhelier, and G. P. Wiederrecht, "Surface plasmon rainbow jets," Opt. Lett. 30, 884-886 (2005).
    37. H. Kikuta, H. Toyota, and W. J. Yu, "Optical elements with subwavelength structured surfaces," Optical Review 10, 63-73 (2003).
    38. O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Applied Physics Letters 89, 233117 (2006).
    39. L. H. Cescato, E. Gluch, and N. Streibl, "HOLOGRAPHIC QUARTERWAVE PLATES," Applied Optics 29, 3286-3290 (1990).
    40. A. A. Lyutich, I. S. Molchan, and N. V. Gaponenko, "Birefringence in porous anodic aluminum oxide," Optics and Spectroscopy 97, 817-821 (2004).
    41. L. Moreno, and F. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Optics Express 12, 3619-3628 (2004).
    42. P. K. Wei, H. L. Chou, and W. S. Fann, "Optical near field in nanometallic slits," Optics Express 10, 1418-1424 (2002).
    43. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," Journal of Applied Physics 90, 3825-3830 (2001).
    44. C. W. Tang, and S. A. Vanslyke, "ORGANIC ELECTROLUMINESCENT DIODES," Appl. Phys. Lett. 51, 913-915 (1987).
    45. C. G. Neil, H. F. Richard, and D. C. B. Donal, "Angular Dependence of the Emission from a Conjugated Polymer Light-Emitting Diode: Implications for efficiency calculations," Adv. Mater. 6, 491-494 (1994).
    46. Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, "Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure," J. Appl. Phys. 96, 7629-7636 (2004).
    47. Y. Takashi, S. Kazuhiro, and T. Tetsuo, "Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium," Appl. Phys. Lett. 76, 1243-1245 (2000).
    48. S. Moller, and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
    49. Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, "Enhanced light outcoupling in a thin film by texturing meshed surfaces," Appl. Phys. Lett. 90, 3 (2007).
    50. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
    51. Y. Liu, and S. Blair, "Fluorescence transmission through 1-D and 2-D periodic metal films," Opt. Express 12, 3686-3693 (2004).
    52. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, "The role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
    53. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, Berlin, 2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE