簡易檢索 / 詳目顯示

研究生: 曾文昭
Tseng, Wen-Chao
論文名稱: 在低溫下利用電漿輔助化學氣相沉積成長非晶碳化矽薄膜與光伏元件之研究
Low Temperature Growth of a-SiC:H Thin Film by Plasma Enhanced Chemical Vapor Deposition for Photovoltaic Application
指導教授: 柳克強
Leou, Keh-Chyang
口試委員: 吳永俊
王敏全
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 140
中文關鍵詞: 電漿輔助化學氣相沉積光譜非晶碳化矽
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來能源議題逐漸受到關注,而發展中的太陽能發電不但供應了源源不絕的能量且不會對地球造成汙染,使各界認為太陽能源或許能是未來的替代能源。而市面上最廣泛應用的是矽晶太陽電池,可分為兩大類: 1.塊材2.薄膜。後者矽消耗量小,相較之下可以降低成本,且沉積溫度在較低溫就可進行,可以減少浪費。一般矽薄膜太陽電池是利用非晶矽薄膜製作而成,而如果在製程氣體上加入甲烷或乙烷提供碳形成(amorphous silicon carbide a-SiC:H)薄膜,研究上顯示會形成高能隙太陽電池,在發光二極體、智慧節能窗等皆有相關應用。
    a-SiCx:H薄膜中,Si-C鍵比例增高時,薄膜整體晶格無序增加使電池的光電特性下降。而如果在較低溫(150 ℃)下沉積,光暗電導還會再下降。由於太陽電池中可撓式基板逐漸受到矚目,在低溫下製程並有較高品質薄膜則顯得格外重要。因此本研究主要著重在低製程溫度(150 ℃)沉積a-SiC:H薄膜,並結合材料特性、電漿特性和光譜儀分析(Optical Emission Spectroscopy,OES)之製程參數變化尋求關聯性,獲得高光學能隙與高光敏性吸收層之薄膜,同時結合N、P層形成PIN太陽電池元件。
    本實驗方法是利用27.12 MHz 的Plasma Enhanced Chemical Vapor Deposition (PECVD)沉積,同時藉由OES量測並記錄電漿中粒子的放射光強度,之後分析粒子的相對強度(如Hβ/Hα、CH/SiH*等OES-ratio)建立電漿光譜。因薄膜在低溫條件下材料品質會不太穩定,因此可以藉由OES提供一即時偵測電漿腔體穩定性外,也可利用放射光強度相對變化預測光學能隙在隨參數變化時之趨勢。研究發現,電漿放射光強度比(CH/SiH*)與薄膜光學能隙(Eg)具有相同的趨勢。所沉積的本質層薄膜具有高能隙特性,結合P、N層形成PIN單一接面太陽電池,具則有高穿透率、高開路電壓之特性,已接近電致變色片的需求。而元件在照光下的電壓電流曲線圖呈S曲線,推測原因為能階不匹配所導致。


    中文摘要 I Abstract II 致謝 III 目錄 III 圖目錄 VI 表目錄 XIII 第一章 引言 1 1.1 研究動機 2 1.2 研究目的 3 第二章 文獻回顧 4 2.1 材料結構與薄膜光電性質的關聯性 4 2.1.1 碳含量與材料結構之關係 4 2.1.2光學性質與非晶矽碳含量關係 5 2.1.3 非晶矽薄膜應用P型基材之電特性 11 2.2 低溫製程a-SiC:H薄膜的特性 13 2.3電致變色片應用 15 2.3.1 a-SiC薄膜電致變色片原理 17 2.4 電漿放射光譜與沉積速率之關連性 17 2.4.1 多晶碳化矽之薄膜表面與放射光譜強度關係 18 2.4.2 OES ratio(CH/SiH* 、 Hβ/Hα) 與薄膜特性關聯性 19 2.5 結論 22 第三章 基本原理 23 3.1 電漿基本原理 23 3.2 非晶碳化矽薄膜成長機制 23 3.3 放射光譜及光譜儀量測原理 26 3.3.1 放射光譜原理 26 3.3.2 光譜儀量測原理 28 第四章 研究方法與實驗設置 31 4.1 研究方法 31 4.2 a-SiC:H 薄膜成長 33 4.2.1 電漿輔助化學氣相沉積系統 (PECVD system) 34 4.2.2 基材的選擇與清洗 34 4.2.3 實驗設計 35 4.3 儀器量測原理與分析方法 35 4.3.1 光譜儀(OES) 35 4.3.2 電漿光譜放射強度擬合 36 4.3.3 Raman 光譜儀原理 46 4.3.4 Film Tek 2000 47 4.3.5 光能隙(optical bandgap) 48 4.3.6 光敏性(photosensitivity) 49 第五章 研究結果與討論 52 5.1 射頻功率的影響 52 5.1.1 材料特性 52 5.1.2 光電特性(光學能隙及光敏性) 53 5.1.3 電漿放射光譜 55 5.1.4 電漿放射光譜分析與與薄膜特性之關聯性 56 5.1.5 光伏元件之應用 57 5.2 腔體壓力之影響 61 5.2.1 材料特性 61 5.2.2 光電特性(光學能隙及光敏性) 62 5.2.3 電漿放射光譜 63 5.2.4 電漿放射光譜分析與薄膜特性之關聯性 65 5.2.5 光伏元件之應用 66 5.3 甲烷流量之影響 69 5.3.1 材料特性 69 5.3.2 光電特性(光學能隙及光敏性) 70 5.3.3 電漿放射光譜 72 5.3.4 電漿放射光譜分析與與薄膜特性之關聯性 74 5.3.5 光伏元件之應用 75 第六章 結論 80 文獻參考 82 附錄A 85 附錄B 139

    1. Bullock, J.N., et al., Semi-transparent a-SiC:H solar cells for self-powered photovoltaic-electrochromic devices. Journal of Non-Crystalline Solids, 1996. 198: p. 1163-1167.
    2. Gao, W., et al., First a-SiC : H photovoltaic-powered monolithic tandem electrochromic smart window device. Solar Energy Materials and Solar Cells, 1999. 59(3): p. 243-254.
    3. Benson, D.K. and H.M. Branz, Design goals and challenges for a photovoltaic-powered electrochromic window covering. Solar Energy Materials and Solar Cells, 1995. 39(2-4): p. 203-211.
    4. Chen, T., et al., Highly Conductive p-Type Silicon Carbon Alloys Deposited by Hot-Wire Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2010. 49(4).
    5. Damian Pysch , M.B., Martin Hermle and Stefan W. Glunz, Amorphous silicon carbide heterojunction solar cells on p-type substrates. Thin Solid Films, 2011. Volume 519, Issue 8: p. Pages 2550-2554.
    6. Basa, D.K., et al., Spectroscopic ellipsometry study of hydrogenated amorphous silicon carbon alloy films deposited by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2010. 107(2).
    7. Ambrosone, G., et al., Correlation between structural and opto-electronic properties of a-Si1-xCx:H films deposited by plasma enhanced chemical vapour deposition. Thin Solid Films, 2010. 518(20): p. 5871-5874.
    8. Ni, J., et al., Low temperature deposition of high open-circuit voltage ( > 1.0 V) p-i-n type amorphous silicon solar cells. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1922-1926.
    9. http://www.ac.usc.es/simulation/solarcells.
    10. http://www.lbl.gov/Science-Articles/Archive/sb/Aug-2004/3_coolroofs-2.html
    11. P. Torres, U.K., H. Keppner, J. Meier, E. Sauvain and A.Shah, Deposition of Thin-Film Silicon for Photovoltaics:Use of VHF-GD and OES. 1998.
    12. Ambrosone, G., et al., Study on the microstructural and overall disorder in hydrogenated amorphous silicon carbon films. Journal of Applied Physics, 2008. 104(12).
    13. Hanel, A.M., et al., Amorphous SixC1-x:H single layers before and after thermal annealing: Correlating optical and structural properties. Solar Energy Materials and Solar Cells, 2010. 94(11): p. 1942-1946.
    14. I, S., Amorphous silicon–carbon alloys: a promising but complex and very diversified series of materials. Applied Surface Science, 2001. 184(1-4): p. 3-7.
    15. Suendo, V. and P.R.I. Cabarrocas, Plasma diagnostics in silane-methane-hydrogen plasmas under pm-Si1-xCx : H deposition conditions: Correlation with film properties. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 959-963.
    16. Akaoglu, B., et al., Influences of carbon content and power density on the uniformity of PECVD grown a-Si1-x : C-x : H thin films. Vacuum, 2006. 81(1): p. 120-125.
    17. Akihisa, M., Microcrystalline silicon.: Growth and device application. Journal of Non-Crystalline Solids, 2004. 338-340(0): p. 1-12.
    18. Motohashi, K., et al., Dissociative excitation of CH4 by electron impact: Emission cross sections for the fragment species. Chemical Physics, 1996. 213(1-3): p. 369-384.
    19. Chemical Physics 213 (1996)(Japan).
    20. http://www.plasus.de/.
    21. Felts, J. and E. Lopata, Measurements of electron temperature in a capacitively coupled plasma using emission spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988. 6(3): p. 2051-2053.
    22. Soderstrom, T., et al., Optimization of amorphous silicon thin film solar cells for flexible photovoltaics. Journal of Applied Physics, 2008. 103(11).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE