簡易檢索 / 詳目顯示

研究生: 安寧達
Das, Anindya
論文名稱: 合成唾液酸酶抑製劑與O-鍵結之乙醇酸基化唾液酸寡醣體
Syntheses of Neuraminidase Inhibitors and O-Linked Neu5Gc Oligosialic Acids
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 汪炳鈞
Uang, Biing-Jiun
陳建添
Chen, Chien-Tien
梁健夫
Liang, Chien-Fu
羅順原
Luo, Shun-Yuan
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 385
中文關鍵詞: 唾液酸流感神經氨酸酶瑞樂沙三唑海膽
外文關鍵詞: Sialic Acids, Influenza, Neuraminidase Inhibitors, Zanamivir, Traizole, Sea urchin
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 唾液酸是天然存在的2-酮-3-脱氧非酸類的多樣化家族,其中N-乙醯神經氨酸是最普遍存在的一種。含唾液酸的碳水化合物在自然界中廣泛分布,由於其末端位置帶有負电荷,使唾液酸在免疫方面具有許多作用。這些單糖具有促進分子間和细胞間相互作用的潛力,而在细胞表面上表達的唾液酸也涉及許多生理學和病理學通信相關的作用,並且作受體介導的細胞間相互作用,細胞-細胞黏附,及宿主細胞-病原體識别過程的配體。因此,含唾液酸聚糖的合成對於治療的設計是必要的。
    在我的論文第2章中,描述了在第一組中神經氨酸酶的活性位點的開發,用於設計和合成與扎那米蘭(zanamivir)相關的含有1,4-二取代1,2,3-三唑之N-醯基衍生物。我們研究了這些衍生物對第1組(H1N1)和第2組(H3N2)的流感病毒的抑制活性,抑制研究顯示其中幾種具有良好抑制能力,且IC50值在奈米等級(2.3至31nM)範圍内。與空腔殘基形成穩定凡德瓦相互作用的取代基在42a抑制中起關鍵作用,研究表示,環己烷取代的三唑環朝向開放形式的第1組NA的活性位點的疏水區域延伸。抑制劑42a擁有很好的活性可歸因於在該區域中的疏水相互作用。我們預期這種分子洞察可能有助於設計針對這些NA的新的選擇性抑制劑,發展出新一代結構獨特的抗流感藥物。
    在我的論文第三章中,我們專注於精子結合蛋白的硫酸化和非硫酸化寡唾酸酸鏈的合成。我的主要目標是9-硫酸化衍生物1a的合成,該合成以化合物1b為起始物,首先在(2→5)-Neu5Gc唾液酸苷的9號位置建構硫酸鹽基團,接著與唾液酸-Tn雙糖進行醯胺偶合反應,探討用於合成非硫酸化衍生物(1b)和硫酸化衍生物(1a)的兩種不同的策略。合成策略是以烯丙醇轉化為乙醇酸部分(33)的唾液酸化產物(12)。然後將這兩個結構單元用於按照相似的反應順序合成雙唾液酸苷(31)。對於-(2→6)-唾液酸-Tn雙糖的合成,我們採用化學酶合成法,以ManCbz為起始物做一鍋化反應。以化合物(91)作為受體,使用酵素NmCSS和Pd26ST以54%的產率合成(93),然後將雙糖結構單元(88)和(95)轉化為四糖(97),隨後對帶有保護基的四糖進行去保護,完成了目標硫酸化的化合物1a的合成。


    Sialic acids are a diverse family of more than 50 naturally occurring 2-keto-3-deoxy-nononic acids, amongst which N-acetylneuraminic acid is the most ubiquitous. Sialic acid-containing carbohydrates is widely distributed in nature. Because of their terminal location and negative charge, sialic acids have numerous roles in many aspects of immunity. These monosaccharides have the potential to contribute intermolecular and intercellular interactions. Sialic acids expressed on cell surfaces involve many physiological and pathological communications, and serve as ligands for receptor mediated intercellular interactions, cell-cell adhesion, host cell-pathogen recognition processes. Therefore, the synthesis of sialic acid-containing glycans is essential for the design of therapeutics.
    In my 2nd chapter, we describe the exploitation of the 150-cavity in the active site of group 1 neuraminidase for the design and synthesis of new 1,4-disubstituted 1,2,3 triazole-containing N-acyl derivatives related to zanamivir. We studied the inhibitory activities of these derivatives against influenza virus of group 1 (H1N1) and group 2 (H3N2). The inhibition studies revealed that several of them are good inhibitors, with IC50 values in the low nanomolar (2.3 to 31 nM) range. . Substituents that form stable van der Waals interaction with the 150-cavity residues play crucial roles in NA inhibition as demonstrated by the potency of 42a (H1N1 IC50 = 2.3 nM, and H3N2 IC50 = 2.9 nM). Docking studies indicated that the cyclohexane-substituted triazole ring extended toward the hydrophobic region in the active site of group 1 NA in open form. The high potency observed for inhibitor 42a may be attributable to the highly favorable hydrophobic interactions in this region. We anticipate that this molecular insight may
    xx
    contribute to the design of novel selective inhibitors against these NAs, potentially leading to a new generation of structurally unique anti-influenza drugs.
    In my third chapter, we focused on the synthesis of the sulfated and non-sulfated oligosialic acid chain of the sperm binding protein. My initial and major focus has been on the synthesis of 9-sulfated derivative 1a. The synthesis is based on the model compound non-sulfated 1b. I have approached this first by installing the sulfate at the 9’-position of the -(2→5)-Neu5Gc disialoside followed by an amide coupling reaction with sialyl-Tn disaccharide. Two different strategies for the synthesis of non-sulfated derivative (1b) and sulfated derivative (1a) were explored. The synthetic strategy is based on the use of allyl alcohol to achieve an exclusive -sialylation product (12) which was transformed into glycolic acid moiety (33). These two building blocks were then used for the synthesis of disialoside 31 following similar sequence of reaction. For the synthesis of (2→6)-sialyl-Tn disaccharide, we followed chemoenzymatic approach starting from ManCbz in an one-pot manner. We employed 91 as an ‘acceptor’ and NmCSS and Pd26ST to synthesize 93 in 54% yield. The disaccharide building blocks 88 and 95 were then transformed tetrasaccharide 97. The subsequent deprotection of this protected tetrasaccharide completed the synthesis of the target sulfated compound 1a.

    Title i Acknowledgements ii Table of contents iv List of Figures viii List of Schemes xi List of Tables xii Abbreviation xiv Abstract xix Chapter 1: Introduction 1 1.1 Carbohydrates and Carbohydrate Chemistry 1 1.2 Sialic Acid 3 1.2.1 Structure of Sialic acids 9 1.2.2 Biological roles of sialic acids 11 1.2.3 Synthesis of sialic acids 11 1.2.3.1 Enzymatic synthesis of sialic acid 11 1.2.3.2 Chemical synthesis of sialic acid 12 1.3 Polysialic acids 14 1.4 Gangliosides 16 1.5 Synthesis of sialic acid containing saccharides 19 1.5.1 Chemical sialylation 19 1.5.2 Chemoenzymatic synthesis of -sialosides 22 1.6 Objectives 25 1.7 References 26 Chapter 2: Design and Synthesis of 1,2,3-Triazole-Containing N-acyl Zanamivir Analogs as Potent Neuraminidase Inhibitors 35 2.1 Introduction 36 2.1.1 Classification of influenza virus 37 2.1.2 Structure of influenza virion 38 2.1.3 Life cycle of influenza virus and molecular targets for anti-flu drug Development 39 2.1.4 Antiviral agents 40 2.1.4.1 Inhibitors targeting Hemagglutinin (HA) 41 2.1.4.2 Inhibitors targeting RNA polymerase 42 2.1.4.3 M2-protein inhibitors 43 2.1.4.4 Neuraminidase inhibitors 44 2.2 Neuraminidase inhibitor design 47 2.3 Click Chemistry: A brief overview 51 2.3.1 Copper-catalyzed azide-alkyne cycloaddition (CuAAC) 52 2.3.2 Mechanism of CuAAC 53 2.4 Motivation 55 2.5 Results and Discussion 55 vi 2.5.1 Chemistry 55 2.5.2 Competitive inhibitory activities of compounds 41a-d 59 2.5.3 Synthesis of library compounds 42a-n 61 2.5.4 Inhibitory activities of compounds 42a-n 62 2.6 Conclusions 66 2.7 Experimental Sections 67 2.7.1 General Information 67 2.7.2 Characterization of Compounds 68 2.7.3 General procedure for the synthesis of compounds 42a-n 75 2.7.4 Characterization of compounds 42a-n 75 2.8 Neuraminidase inhibition assay 85 2.9 Molecular docking 86 2.10 References 87 Chapter 3: Synthesis of Neu5Gc containing O-linked oligo-saccharide chain found in the glycoprotein of sea urchin egg jelly coat 97 3.1 Introduction 98 3.2 Reported work towards the synthesis of -(2-5)-Neu5Gc di and oligomers 102 3.2.1 Ren’s Method 102 3.2.2 Lin’s Method 104 3.2.3 Hindsgaul’s Method 105 3.2.4 Wu’s Method 106 3.3 Results and discussion 108 vii 3.3.1 Retrosynthetic analysis of compound 1b 108 3.3.2 Synthesis of building blocks 15, 33, and 31 110 3.3.3 Synthesis of sialyl-Tn analog 116 3.3.3.1 Synthesis of sialic acid donor 44 116 3.3.3.2 Synthesis of Tn acceptor 35 117 3.3.3.3 Synthesis of sialyl-Tn 53 and tetra-saccharide 56 118 3.3.4 Model study for the synthesis of compound 59 120 3.3.5 Synthesis of modified STn derivative 61 and non-sulfated derivative 1b 121 3.3.6 Synthesis of sulfated analog 1a 124 3.3.6.1 Retrosynthetic analysis for sulfated analog 1a 124 3.3.6.2 Model study for 9-O-sulfation 125 3.3.6.3 Modified retrosynthesis of sulfated derivative 1a 127 3.3.6.4 Synthesis of Neu5Gc dimer compound 75 128 3.3.6.5 Synthesis of protected pre-sulfated derivative 73 130 3.3.6.6 Model study for direct 9-O-sulfation of non-reducing Neu5Gc 131 3.3.6.7 Synthesis of Sialyl-Tn building 95 via enzymatic sialylation 133 3.3.6.8 Synthesis of sulfated derivative 1a 136 3.4 Conclusion 137 3.5 Experimental data 138 3.5.1 General procedures 138 3.5.2 Synthetic procedures and characterization 138 3.6 References 189 4. Chapter-4: Prospective 198 5. Appendix 201

    Chapter-1:
    1. Hart, G. W. In Carbohydrates in Chemistry and Biology, Vol. 3; Ernst, B.; Hart, G. W.; Sinay, P., Eds.; Wiley-VCH: Weinheim, 2000, V−Vl.
    2. Sears, P.; Wong, C. H. Intervention of carbohydrate recognition by proteins and nucleic acids. Proc. Natl. Acad. Sci USA 1996, 93, 12086−12093.
    3. Sznaidman, M. In Bioorganic Chemistry: Carbohydrates; Hecht, S. M., Ed.; Oxford University Press: New York, 1999, 1−55.
    4. Yamada, H.; Harada, T.; Miyazaki, H.; Takahashi, T. One-pot sequential glycosylation: A new method for the synthesis of oligosaccharides. Tetrahedron Lett. 1994, 35, 3979−3982.
    5. Sears, P.; Wong, C.-H. Toward automated synthesis of oligosaccharides and glycoproteins. Science 2001, 291, 2344−2350.
    6. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 2001, 291, 1523−1527.
    7. Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-J. A general strategy for stereoselective glycosylations. J. Am. Chem. Soc. 2005, 127, 12090−12097.
    8. Pellissier, H. Use of O-glycosylation in total synthesis. Tetrahedron 2005, 61, 2947−2993.
    9. Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Regioselective one-pot protection of carbohydrates. Nature 2007, 446, 896−899. 10. Boltjie, T. J.; Buskas, T.; Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 2009, 1, 611−622.
    27
    11. Mydock, I. K.; Demchenko, A. V. Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Org. Biomol. Chem. 2010, 8, 497−510. 12. Yang, Y.; Zhang, X.; B, Yu. O-Glycosylation methods in the total synthesis of complex natural glycosides. Nat. Prod. Rep. 2015, 32, 1331−1355.
    13. Schauer, R. Sialic Acids: Chemistry, Metabolism and Function Vol. 10, Springer-Verlag, New York City, 1982, 5−39.
    14. Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. 2000, 17, 485−499.
    15. Rosenberg, A. Biology of the Sialic Acids. Plenum Press: New York, 1995.
    16. Schauer, R. Chemistry, metabolism, and biological functions of sialic acids. Adv. Carbohydr. Chem. Biochem. 1982, 40, 131−234.
    17. Angata, T.; Varki, A. Chemical diversity in the sialic acids and related -keto acids: an evolutionary perspective. Chem. Rev. 2002, 102, 439−469.
    18. Yarema, K. J.; Bertozzi, C. R. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr. Opin. Chem. Biol. 1998, 2, 49−61.
    19. Bertozzi, C. R.; Kiessling, L. L. Chemical glycobiology. Science 2001, 291, 2357−2364.
    20. Barclay, A. N.; Brown, M. H. Heterogeneity of interactions mediated by membrane glycoproteins of lymphocyte. Biochem. Soc. Trans. 1997, 25, 224−228.
    21. Varki. A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007, 446, 1023−1029.
    28
    22. Sears, P.; Wong, C. H. Carbohydrate mimetics: A new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angew. Chem. Int. Ed. 1999, 38, 2300−2324.
    23. Crocker, P. R. Siglecs: sialic-acid binding immunoglobulin-like lectins in cell-cell interactions and signaling. Curr. Opin. Struct. Biol. 2002, 12, 609−615.
    24. Bratosin, D.; Mazurier, J.; Debray, H.; Lecocq, M.; Boilly, B.; Alonso, C.; Moisei, M.; Motas, C.; Montreuil, J. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconjugate J. 1995, 12, 258−267.
    25. Fitz, W.; Schwark, J.-R.; Wong, C.-H. Aldotetroses and C-(3)-modified aldohexoses as substrates for N-acetylneuraminic acid aldolase: A model for the explanation of the normal and the inversed stereoselectivity. J. Org. Chem. 1995, 60, 3663−3670.
    26. Cornforth, J. W.; Firth, M. E.; Gottschalk, A. The synthesis of N-acetylneuraminic acid. Biochem. J. 1958, 68, 57−61.
    27. Kuhn, R.; Baschang, G. Justus Liebigs Ann. Chem. 1962, 659, 156−163.
    28. Kozlov, I. A.; Mao, S.; Xu, Y.; Huang, X.; Lee, L.; Sears, P. S.; Gao, C.; Coyle, A. R.; Janda, K. D.; Wong, C.-H. Synthesis of solid-supported mirror-image sugars: A novel method for selecting receptors for cellular-surface carbohydrates. Chembiochem. 2001, 2, 741−746.
    29. Hong, Z. Y.; Liu, L.; Hsu, C.-C.; Wong, C.-H. Three-step synthesis of sialic acids and derivatives. Angew. Chem. Int. Ed. 2006, 45, 7417−7421.
    30. Lorpitthaya, R.; Suryawanshi, S. B.; Wang, S.; Pasunooti, K. K.; Cai, S.; Ma, J.; Liu, X.-W. Total Synthesis of sialic acid by a sequential rhodium-catalyzed
    29
    aziridination and barbier allylation of D-glycal. Angew. Chem. Int. Ed. 2011, 50, 12054−12057.
    31. Wei, X.-F.; Shimizu, Y.; Kanai, M. An expeditious synthesis of sialic acid derivatives by copper-(I)-catalyzed stereodivergent propargylation of unprotected aldoses. ACS Cent. Sci. 2016, 2, 21−26.
    32. Barry, G. T.; Goebel, W. F. Colominic acid, a substance of bacterial origin related to sialic acid. Nature 1957, 179, 206.
    33. Suzuki, M.; Suzuki, A.; Nakayama, J. Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 2005, 15, 887−894.
    34. a) Wu, Y.-F.; Tsai, Y.-F.; Yu, C.-P.; Yu, H.-M.; Liao, C.-C. First total synthesis of ganglioside DSG-A possessing neuritogenic activity. Org. Biomol. Chem. 2014, 12, 9345−9349. b) Hung, J.-T.; Yeh, C.-H.; Yang, S.-A.; Lin, C.-Y.; Tai, H.-J.; Shelke, G. B.; Reddy, D. M.; Yu, A. L.; Luo, S.-Y. Design and synthesis, and biological evaluation of ganglioside Hp-s1 analogues varying at glucosyl moiety. ACS Chem. Neurosci. 2016, 7, 1107–1111 35. Sonnino, S.; Chigorno, V. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim. Biophysica. Acta 2000, 1469, 63−77.
    36. Yu, R. K.; Tsai, Y.-T.; Arigo, T. Functional roles of ganglioside in neurodevelopment: an overview of recent advances. Neurochem. Res. 2012, 37, 1230−1244.
    30
    37. Kaneko, M.; Yamada, K.; Miyamoto, T.; Inagaki, M.; Higuchi, R. Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship. Chem. Pharm. Bull. 2007, 55, 462−463.
    38. Fiore, M.; Chaldakov, G.; Aloe, L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev. Neurosci. 2009, 20, 133−145.
    39. a) Adak, A. K.; Yu, C. C.; Liang, C. F.; Lin, C. C. Synthesis of sialic acid-containing saccharides. Curr. Opin. Chem. Biol. 2013, 17, 1030−1038. b) Chen, X.; Varki, A. Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 2010, 5, 163−176. c) Kiefel, M. J.; von Itzstein, M. Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chem. Rev. 2002, 102, 471−490. d) Boons, G. J.; Demchenko, A. V. Recent advances in O-sialylation. Chem. Rev. 2000, 100, 4539−4566; e) Halcomb, R. L.; Chappell, M. D. J. Carbohydr. Chem. 2002, 21, 723−768. f) Ress, D. K. Linhardt, R. J. Curr. Org. Synth. 2004, 1, 31−46.
    40. a) Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. A facile, large-scale preparation of the methyl 2-thioglycoside of N-acetylneuraminic acid, and its usefulness for the α-stereoselective synthesis of sialoglycosides. Carbohydr. Res. 1991, 212, 277−281. b) De Meo, C.; Parker, O. Thiomidoyl approach to the synthesis of α-sialosides. Tetrahedron: Asymmetry 2005, 16, 303−307.
    41. a) Lin, C. C.; Huang, K. T.; Lin, C. C. N-trifluoroacetyl sialyl phosphite donors for the synthesis of (2→9) oligosialic acids. Org. Lett. 2005, 7, 4169−4172. b) Martin, T. J.; Schmidt, R. R. Efficient sialylation with phosphite as leaving group.
    31
    Tetrahedron Lett. 1992, 33, 6123−6126; c) Martin, T. J.; Brescello, R.; Toepfer, A.; Schmidt, R. R. Synthesis of phosphites and phosphates of neuraminic acid and their glycosyl donor properties—convenient synthesis of GM3. Glycoconjugate J. 1993, 10, 16−25. d) Kondo, H.; Ichikawa, Y.; Wong, C.-H. Beta-Sialyl phosphite and phosphoramidite: synthesis and application to the chemoenzymic synthesis of CMP-sialic acid and sialyl oligosaccharides. J. Am. Chem. Soc. 1992, 114, 8748−8750.
    42. Cai, S.; Yu, B. Efficient sialylation with phenyltrifluoroacetimidates as leaving groups. Org. Lett. 2003, 5, 3827−3830.
    43. Okamoto, K.; Kondo, T.; Goto, T. An effective synthesis of α-glycosides of N-acetylneuraminic acid by use of 2β-halo-3β-hydroxy-4, 7, 8, 9-tetra-O-acetyl-N-acetylneuraminic acid methyl ester. Tetrahedron Lett. 1986, 27, 5233−5236. b) Castro-Palomino, J. C.; Tsvetkov, Y. E.; Schmidt, R. R.; 8-O-Sialylation of neuraminic acid. J. Am. Chem. Soc. 1998, 120, 5434−5440.
    44. Lin, C. C,; Adak, A. K.; Horng, J. C.; Lin, C. C. Phosphite-based sialyl donors in the synthesis of (2→9)-oligosialic acids. Tetrahedron 2009, 65, 4714−4725.
    45. Tanaka, H.; Nishiura, Y; Takahashi, T. Stereoselective synthesis of (2→9) di- to tetrasialic acids, using a 5,4-N,O-carbonyl protected thiosialoside. J. Org. Chem. 2009, 74, 4383→4390.
    46. Lin, C. C,; Lin, N. P; Sahabuddin, L. S.; Reddy, V. R.; Huang, L. D.; Hwang, K. C.; Lin, C. C. 5-N,4-O-Carbonyl-7,8,9-tri-O-chloroacetyl-protected sialyl donor for the stereoselective synthesis of (2→9)-tetrasialic acid. J. Org. Chem. 2010, 75, 4921−4928.
    32
    47. Yu, C. S.; Niikura, K.; Lin, C. C.; Wong, C.-H. The thioglycoside and glycosyl phosphite of 5-azido sialic acid: excellent donors for the a-glycosylation of primary hydroxy groups. Angew. Chem. Int. Ed. 2001, 40, 2900−2903.
    48. a) Hsu, C. H.; Chu, K. C.; Lin, Y. S.; Han, J. L.; Peng, Y. S.; Ren, C. T.; Wu, C. Y.; Wong, C. H. Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides. Chem. Eur. J. 2010, 16, 1754−1760. b) Chu, K.-C.; Ren, C.-T.; Lu, C.-P.; Hsu, C.-H.; Sun, T.-H.; Han, J.-L.; Pal, B.; Chao, T.-A.; Lin, Y.-F.; Wu, S.-H.; Wong, C.-H.; Wu, C.-Y. Efficient and stereoselective synthesis of (2→9) oligosialic acids: From monomers to dodecamers. Angew. Chem. Int. Ed. 2011, 50, 9391−9395.
    49. Lu, K. C.; Tseng, S. Y.; Lin, C. C. 5-Azido neuraminic acid thioglycoside as sialylation donor. Carbohydr. Res. 2002, 337, 755−760.
    50. Kancharla, P. K.; Navuluri, C.; Crich, D. Dissecting the influence of oxazolidinones and cyclic carbonates in sialic acid chemistry. Angew. Chem. Int. Ed. 2012, 51, 11105−11109.
    51. Ando, H.; Koike, Y.; Koizumi, S.; Ishida, H. Kiso, M. 1,5-Lactamized sialyl acceptors for various disialoside syntheses: novel method for the synthesis of glycan portions of Hp-S6 and HLG- 2 gangliosides. Angew. Chem. Int. Ed. 2005, 44, 6759-6763.
    52. Tamai, H.; Ando, H.; Ishida, H.; Kiso, M. First synthesis of a pentasaccharide moiety of ganglioside GAA-7 containing unusually modified sialic acids through the use of N-Trocsialic acid derivative as a key unit. Org. Lett. 2012, 14, 6342−6345.
    33
    53. Tanaka, H.; Nishiura, Y.; Takahashi, T. Stereoselective synthesis of oligo-(2→8)-sialic acids. J. Am. Chem. Soc. 2006, 128, 7124→7125.
    54. Crich, D.; Li, W. O-sialylation with N-acetyl-5-N,4-O-carbonyl- protected thiosialoside donors in dichloromethane: facile and selective cleavage of the oxazolidinone ring. J. Org. Chem. 2007, 72, 2387−2391.
    55. Schwardt, O.; Visekruna, T.; Rabbani, S.; Ernst, B. Minireview: Bacterial sialyltransferases for carbohydrate synthesis. Chimia. 2006, 60, 234−240.
    56. Palcic, M. M. Glycosyltransferases as biocatalysts. Curr. Opin. Chem. Biol. 2011, 15, 226–233.
    57. Qian, X.; Sujino, K.; Palcic, M. M.; Ratcliffe, R. M. Glycosyltransferases in oligosaccharide synthesis. J. Carbohydr. Chem. 2002, 21, 911−942.
    58. Schmaltz, R. M.; Hanson, S. R.; Wong, C.-H. Enzymes in the synthesis of glycoconjugates. Chem. Rev. 2011, 111, 4259−4307.
    59. Fessner, W.-D.; He, N.; Yi, D.; Unruh, P.; Knorst, M., Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions, (Eds: S. Riva, W.-D. Fessner, Wiley-VCH, 2014, pp 361−392.
    60. Takakuray, Y.; Tsukamoto, H.; Yamamoto, T. Molecular cloning, expression and properties of an α/β-galactoside α2, 3-sialyltransferase from Vibrio sp. JT-FAJ-16. J. Biochem. 2007, 142, 403–412.
    61. Gilbert. M.; Watson, D. C.; Cunningham, A. M.; Jennings, M. P.; Young, N. M.; Wakarchuk, W. W. Cloning of the lipooligosaccharide -2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 1996, 271, 28271−28276.
    34
    62. Izumi, M.; Shen, G. J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.; Wong, C.-H. Microbial glycosyltransferases for carbohydrate synthesis: -2,3-sialyltransferase from Neisseria gonorrheae. J. Am. Chem. Soc. 2001, 123, 10909−10918.
    63. Gilbert, M.; Brisson, J. R.; Karwaski, M. F.; Michniewicz, J.; Cunningham, A. M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. J. Biol. Chem. 2000, 275, 3896−3906.
    64. Rich, J. R.; Wakarchuk, W. W.; Bundle, D. R. Chemical and chemoenzymatic synthesis of S-linked ganglioside analogues and their protein conjugates for use as immunogens. Chem. Eur. J. 2006, 12, 845−858.
    65. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S.; Gilbert, M.; Wakarchuk, W. Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 2005, 340, 1963−1972.
    66. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X. A multifunctional pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618−17619.
    67. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I. A novel -2,6-sialyltransferase: transfer of sialic acid to fucosyl and sialyl trisaccharides. J. Org. Chem. 1996, 61, 8632−8635.
    68. Drouillard, S.; Mine, T.; Kajiwara, H.; Yamamoto, T.; Samain, E. Efficient synthesis of 60-sialyllactose, 60-disialyllactose, and 60-KDOlactose by
    35
    metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydr. Res. 2010, 345, 1394−1399.
    69. He, N. Yi, D.; Fessner, W-D. Flexibility of substrate binding of cytosine-50-monophosphate-N-acetylneuraminate synthetase (CMP-sialate synthetase) from Neisseria meningitidis: an enabling catalyst for the synthesis of Neo- sialoconjugates. Adv. Synth. Catal. 2011, 353, 2384−2398.

    Chapter-2:
    1. Monto, A. S.; Iacuzio, I. A.; LaMontague, J. R. Pandemic Influenza: Confronting a Reemergent Threat. J. Infect. Dis. 1997, 176, 51−53.
    2. Glezen, W. P. Serious morbidity and mortality associated with influenza epidemics. Epidemiol. Rev. 1982, 4, 25−44.
    3. Sullivan, S. J.; Jacobson, R. M.; Dowdle, W. R.; Poland, G. A. 2009 H1N1 Influenza. Mayo Clin. Proc. 2010, 85, 64−76.
    4. Beigel, J. H. N. Avian influenza A (H5N1) infection in humans. Engl. J. Med. 2005, 353, 1374−1385.
    5. Taubenberger, J. K.; Morens, D. M. 1918 Influenza: the mother of all pandemics. Emerging Infect. Dis. 2006, 12, 15−22.
    89
    6. Kilbourne, E. D. Influenza pandemics of the 20th century. Emerging Infect. Dis. 2006, 12, 9−14.
    7. Belshe, R. B. The orgins of pandemic influenza – lessons from the 1918 virus. N. Engl. J. Med. 2005, 353, 2209-2211.
    8. Oxford, J. S. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev. Med. Virol. 2000, 10, 119−133.
    9. Von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967−974.
    10. Hayden, F. G. Pandemic influenza: is an antiviral response realistic? Pediatr Infect. Dis. J. 2004, 23, S262−S269.
    11. Ison, M. G. Antivirals and resistance: influenza virus. Curr. Opin. Virol. 2011 1, 563−573.
    12. a) Das, K.; Aramini, J. M.; Ma, L.-C.; Krug, R. M.; Arnold, E. Structures of influenza A proteins and insights into antiviral drug targets Nat. Struct. Mol. Biol. 2010, 17, 530–538; b) Skehel, J. J.; Wiley, D. C. Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569.
    13. a) Hoffman, L. R.; Kuntz, I. D.; White, J. M. Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity. J. Virol. 1997, 71, 8808–8820.. b) Yu, K. –Y.; Torri, A. F.; Luo, G.; Cianci, C.; Young, K. G.; Danetz, S.; Tilley, L.; Krystal, M.; Meanwell, N. A. Structure–activity relationships for a series of thiobenzamide
    90
    influenza fusion inhibitors derived from 1, 3, 3-Trimethyl-5-hydroxy-cyclohexylmethylamine. Bioorg. Med. Chem. Lett. 2002, 12, 3379–3382.
    14. Song, J. M; Park, K. D.; Lee, K. H.; Byun, Y. H.; Park, J. H.; Kim, S. H.; Kim, J. H.; Seong, B. L., Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res. 2007, 76, 178−185.
    15. Chen, D.-Y.; Shien, J.-H.; Tiley, L.; Chiou, S.-S.; Wang, S.-Y.; Chang, T.-J.; Lee, Y.-J.; Chan, K.-W.; Hsu, W.-L. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem. 2010, 119, 1346−1351.
    16. Chen, J. X.; Xue, H. J.; Ye, W. C.; Fang, B. H.; Liu, Y. H.; Yuan, S. H.; Yu, P.; Wang, Y. Q. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol. Pharm. Bull. 2009, 32, 1385−1391.
    17. Boriskin, Y. S.; Leneva, I. A.; Pecheur, E.-I; Polyak, S. J. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem. 2008, 15, 997−1005.
    18. Bodian, D. L.; Yamasaki, R. B.; Buswell, R. L.; Stearns, J. F.; White, J. M.; Kuntz, I. D., Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 1993, 32, 2967−2978.
    19. Tisdale, M.; Ellis, M.; Klumpp, K.; Court, S.; Ford, M., Inhibition of influenza virus transcription by 2’-deoxy-2’-fluoroguanosine. Antimicrob. Ageents. Chemother. 1995, 39, 2454−2458.
    20. Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents. Chemother. 2005, 49, 981−986.
    91
    21. Kao, R. Y.; Yang, D.; Lau, L.-S.; Tsui, W. H. W.; Hu, L.; Dai, J.; Chan, M.-P.; Chan, C.-M.; Wang, P.; Zheng, B.-J.; Sun, J.; Huang, J.-D.; Madar, J.; Chen, G.; Chen, H.; Guan, Y.; Yuen, K.-Y. Identification of influenza A nucleoprotein as an antiviral target. Nature Biotechnol. 2010, 28, 600−605.
    22. Davies, W. L.; Grunert, R. R.; Haff, R. F.; McGahen, J. W.; Neumayer, E. M.; Paulshock, M.; Watts, J. C.; Wood, T. R.; Hermann, E. C.; Hoffmann, C. E., Antiviral activity of 1-Adamantanamine (Amantadine). Science 1964, 144, 862−863.
    23. Horimoto, T.; Kawaoka, Y. Infuenza: lessons from past pandemics, warnings from current incidents. Nature Rev. Microbiol. 2005, 3, 591−600.
    24. Kolocouris, N.; Foscols, G. B.; Kolocouris, A.; Marakos, P.; Pouli, N.; Fytas, G.; Ikeda, S.; De Clercq, E. Synthesis and antiviral activity evaluation of some aminoadamantane derivatives. J. Med. Chem. 1994, 37, 2896−2902.
    25. Mineno, T.; Miller, M. J. Stereoselective total synthesis of tacemic BCX-1812 (RWJ-270201) for the development of neuraminidase inhibitors as anti-influenza agents. J. Org. Chem. 2003, 68, 6591−6596.
    26. Roberts, N. A. Anti-influenza drugs and neuraminidase inhibitors. Prog. Drug Res. 2001, 56, 195−237.
    27. Albel-Magid, A. F.; Maryanoff, C. A.; Mehrman, S. J. Synthesis of influenza neuraminidase inhibitors. Curr. Opin. Drug Discovery Dev. 2001, 4, 776−791.
    28. De Clercq, E. Antivirals and antiviral strategies. Nature Rev. Microbiol. 2004, 2, 704−720.
    29. Varghese, J. N.; Laver, W. G.; Colman, P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 1983, 303, 35−40.
    92
    30. Colman, P. M.; Varghese, J. N.; Laver, W. G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983, 303, 41−44.
    31. Lew, W.; Chen, X.; Kim, C. U. Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor. Curr. Med. Chem. 2000, 7, 663−672.
    32. Varghese, J. N.; Colman, P. M. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 Å resolution. J. mol. Biol. 1991, 221, 473−486.
    33. von Itzstein, M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Rational design of potent sialidase-based inhibitors of influenza virus replication Nature 1993, 363, 418–423.
    34. a) Babu, Y. S.; Chand, P.; Bantia, S.; Kotian, P.; Dehghani, A.; El-Kattan, Y.; Lin, T-H.; Hutchison, T. L.; Elliott, A. J.; Parker, C. D.; Ananth, S. L.; Horn, L. L.; Laver, G. W.; Montgomery, J. A. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 2000, 43, 3482–3486. b) Chand, P.; Kotian, L.; Dehghani, A.; El-Kattan, Y.; Lin, T-H.; Hutchison, T. L.; Babu, Y. S.; Bantia, S.; Elliott, A. J.; Montgomery, J. A. Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity. J. Med. Chem. 2001, 44, 4379–4392.
    35. Kubo, S.; Tomozawa, T.; Kakuta, M.; Tokumitsu, A.; Yamashita, M. Laninamivir prodrug CS-8958, a long-acting neuraminidase inhibitor, shows superior anti-
    93
    influenza virus activity after a single administration. Antimicrob. Agents Chemother. 2010, 54, 1256−1264.
    36. a) Russell, R. J.; Haire1, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay, A. J.; Gamblin, S. J.; Skehel, J. J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006, 443, 45−49. b) Li, Q.; Qi, J.; Zhang, W.; Vavricka, C. J.; Shi, Y.; Wei, J.; Feng, E.; Shen, J.; Chen, J.; Liu, D.; He, J.; Yan, J.; Liu, H.; Jiang, H.; Teng, M.; Li, X.; Gao, G. F. The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat. Struct. Mol. Biol. 2010, 17, 1266–1268.
    37. Wen, W-H.; Wang, S-H.; Tsai, K-C.; Cheng, Y-S. E.; Yang, A-S.; Fang, J-M.; Wong, C-H. Analogs of zanamivir with modified C4-substituents as the inhibitors against the group-1 neuraminidases of influenza viruses. Bioorg. Med. Chem. 2010, 18, 4074−4084.
    38. Li, J.; Zheng, M.; Tang, W.; He, P-L.; Zhu, W.; Li, T.; Zuo, J-P.; Liu, H.; Jiang, H. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg. Med. Chem. Lett. 2006, 16, 5009−5013.
    39. Hong, B. T.; Chen, C. L.; Fang, J. M.; Tsai, K. C.; Wang, S. Y.; Huang, W. I.; Cheng, Y. S. E.; Wong, C. H. Oseltamivir hydroxamate and acyl sulfonamide derivatives as influenza neuraminidase inhibitors. Bioorg. Med. Chem. 2014, 22, 6647−6654.
    40. Guillon, P.; Dirr, L.; El-Deeb, I. M.; Winger, M.; Bailly, B.; Haselhorst, T.; Dyason, J. C.; von Itzstein, M. Structure-guided discovery of potent and dual-acting human
    94
    parainfluenza virus haemagglutinin–neuraminidase inhibitors. Nat. Commun. 2014, 5, 5268.
    41. Xie, Y.; Xu, D.; Huang, B.; Ma, X.; Qi, W.; Shi, F.; Liu, X.; Zhang, Y.; Xu, W. Discovery of N-substituted oseltamivir derivatives as potent and selective inhibitors of H5N1 influenza neuraminidase. J. Med. Chem. 2014, 57, 8445−8458.
    42. El-Deeb, I. M.; Guillon, P.; Winger, M.; Eveno, T.; Haselhorst, T.; Dyason, J. C.; von Itzstein, M. Exploring human parainfluenza virus type-1 hemagglutinin–neuraminidase as a target for inhibitor discovery. J. Med. Chem. 2014, 57, 7613−7623.
    43. Sriwilaijaroen, N.; Magesh, A.; Imamura, A.; Ando, H.; Ishida, H.; Sakai, M.; Ishitsubo, E.; Hori, T.; Moriya, S.; Ishikawa, T.; Kuwata, K.; Odagiri, T.; Tashiro, M.; Hiramatsu, H.; Tsukamoto, K.; Miyagi, T.; Tokiwa, H.; Kiso, M.; Suzuki, Y. A Novel Potent and Highly Specific Inhibitor against Influenza Viral N1–N9 Neuraminidases: Insight into Neuraminidase–Inhibitor Interactions. J. Med. Chem. 2016, 59, 4563−4577.
    44. Rudrawar, S.; Dyason, J. C.; Rameix-Welti, M-A.; Rose, F.J.; Kerry, P. S.; Russell, R. J. M.; Werf, S. V. D.; Thomson, R. J.; Naffakh, N.; Itzstein, M. V. Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat. Commun. 2010, 1, 113−119.
    45. Feng, E.; Shin, W-J.; Zhu, X.; Li, J.; Ye, D.; Wang, J.; Zheng, M.; Zuo, J-P.; No, K. T.; Liu, X.; Zhu, W.; Tang, W.; Seong, B-L.; Jiang, H.; Liu, H. Structure-based design and synthesis of C-1-and C-4-modified analogs of zanamivir as neuraminidase inhibitors. J. Med. Chem. 2013, 56, 671−684.
    95
    46. Shie, J-J.; Fang, J-M.; Lai, P-T.; Wen, W-H.; Wang, S-Y.; Cheng, Y-S. E.; Tsai, K-C.; Yang, A-S.; Wong, C-H. A practical synthesis of zanamivir phosphonate congeners with potent anti-influenza activity. J. Am. Chem. Soc. 2011, 133, 17959−17965.
    47. Lin, C. H.; Chang, T. C.; Das, A.; Fang, M. Y.; Hung, H. C.; Hsu, K. C.; Yang, J. M.; von Itzstein, M.; Mong, K. K.; Hsu, T. A.; Lin, C. C. Synthesis of acylguanidine zanamivir derivatives as neuraminidase inhibitors and the evaluation of their bio-activities. Org. Biomol. Chem. 2013, 11, 3943−3948.
    48. Journet, M.; Cai, D.; Kowl, J. J.; Larsen, R. D. Highly efficient and mild synthesis of variously 5-substituted-4-carbaldehyde-1, 2, 3-triazole derivatives. Tetrahedron Lett. 2001, 42, 9117−9118.
    49. Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R. Heterocyclic peptide backbone modifications in an α-helical coiled coil. J. Am. Chem. Soc. 2004, 126, 15366−15367.
    50. Bezousˆka, K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers (glycodendrimers). Rev. Mol. Biotechnol. 2002, 90, 269−290.
    51. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004−2021.
    52. Meldal, M.; Tornoe, C. W. Cu-catalyzed azide−alkyne cycloaddition. Chem. Rev. 2008, 108, 2952−3015.
    53. Michael, A. J. Prakt. Chem. 1893, 48, 94−95.
    96
    54. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596−2599.
    55. von Itzstein, M.; Wu, W.-Y.; Jin, B. The synthesis of 2, 3-didehydro-2, 4-dideoxy-4-guanidinyl-N-acetylneuraminic acid: a potent influenza virus sialidase inhibitor Carbohydr. Res. 1994, 259, 301−305.
    56. Lu, K.-C; Tseng, S.-Y.; Lin, C.-C. 5-Azido neuraminic acid thioglycoside as sialylation donor. Carbohydr. Res. 2002, 337, 755−760.
    57. Srinivasan, R.; Tan, L. P.; Wu, H.; Yang, P-Y.; Kalesh, K. A.; Yao, S. Q. Org. Biomol. Chem. 2009, 7, 1821−1828.
    58. Yang, J-M.; Chen, C-C. GEMDOCK: a generic evolutionary method for molecular docking. Proteins 2004, 55, 288–304.
    59. a) Amaro, R. E.; Minh, D. D. L.; Cheng, L. S.; Lindstrom, W. M., Jr.; Olson, A. J.; Lin, J.-H.; Li, W. W.; McCammon, J. A. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J. Am. Chem. Soc. 2007, 129, 7764−7765. b) Cheng, X.; Ivanov, I.; Xu, D.; McCammon, J. Characterizing Loop Dynamics and Ligand Recognition in Human- and Avian-Type Influenza Neuraminidases via Generalized Born Molecular Dynamics and End-Point Free Energy Calculations. J. Am. Chem. Soc. 2009, 131, 4702−4709. c) Amaro, R. E.; Swift, R. V.; Votapka, L.; Li, W. W.; Walker, R. C.; Bush, R. M. Mechanism of 150-cavity formation in influenza neuraminidase. Nat. Commun. 2011, 2, 388.
    60. a) Greenway, K. T.; LeGresley, E. B.; Pinto, B. M. The Influence of 150-Cavity binders on the dynamics of Influenza A neuraminidases as revealed by molecular
    97
    dynamics simulations and combined clustering. PloS ONE. 2013, 8, e59873. b) Kerry, P. S.; Mohan, S.; Russell, R. J. M.; Bance, N.; Niikura, M.; Pinto, B. M. Structural basis for a class of nanomolar influenza A neuraminidase inhibitors. Sci. Rep. 2013, 3, 2871−2876.

    Chapter-3:
    1. Lennarz W. J.; Ruiz-Bravo, N. Identification of molecules involved in sperm-egg fusion. Methods Enzymol. 1993, 221, 261−272.
    2. Mourão, P. A.: A carbohydrate-based mechanism of species recognition in sea urchin fertilization. Braz. J. Med. Biol. Res. 2007, 40, 5–17.
    3. Hirohashi, N. Carbohydrate-based gamete recognition during the sperm acrosome reaction in sea urchins. Glycoscien. Biol. Med. 2014, 865–873.
    4. Eddy, E. M. Membrane events of fertilization in the sea urchin. Scan. Electron Microsc. 1979, 3, 287−297.
    5. MacClay, D. R. Evolutionary crossroads in developmental biology: sea urchins. Development. 2011, 138, 2639–2648.
    6. Mengarink, K. J.; Vacquier, V. D. Glycobiology of sperm-egg interactions in deuterostomes. Glycobiology. 2001, 11, 37R–43R.
    193
    7. Mah, S. A.; Swanson, W. J.; Vacquier, V. D. Positive selection in the carbohydrate recognition domains of sea urchin sperm receptor for egg jelly (suREJ) Proteins. Mol Biol Evol. 2005, 22, 533−541.
    8. Foltz, K. R.; Lennarz, W. J. The molecular basis of sea urchin gamete interactions at the egg plasma membrane. Dev. Biol. 1993, 158, 46−61. 9. Prokazova, N. V.; Mikhailov, A. T.; Kocharov, S.L.; Malchenko, L. A.; Zvezdina, N. D.; Buznikov, G.; Bergelson, L. D. Unusual gangliosides of eggs and embryos of the sea urchin Strongylocentrotus intermedius Structure and density-dependence of surface localization. Eur. J. Bio.chem. 1981, 115, 671−677.
    10. Kochetkov, N. K.; Smimova, G. P.; Chekareva, N. V. Isolation and structural studies of a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum. Biochim. Biophys. Acta. 1976, 424, 274−283.
    11. Kubo, H.; Irie, A.; Inagaki, F.; Hoshi, M. Gangliosides from the eggs of the sea Urchin, Anthocidaris crassispina, J. Biochem. 1990, 108, 185−192.
    12. Ijuin, T.; Kitajima, K.; Song, Y.; Kitazume, S.; Inoue, S.; Haslam, S. M.; Morris, H.R.; Dell, A.; Inoue, Y. Isolation and identification of novel sulfated and nonsulfated oligosialyl glycosphingolipids from sea urchin sperm, Glycoconj. J. 1996, 13, 401−413.
    13. Kitazume, S.; Kitajima, K.; Inoue, S.; Haslam, S. M.; Morris, H.R.; Dell, A.; Lennarz, W. J.; Inoue, Y. The occurrence of novel 9-O-sulfated N-glycolylneuraminic acid-capped (2→5)-O-glycolyl-linked oligo/polyNeu5Gc chains in sea urchin egg cell surface glycoprotein. Identification of a new chain termination signal for polysialyltransferase, J. Biol. Chem. 1996, 22, 6694−6701.
    194
    14. Miyata, S.; Sato, C.; Kitamura, S.; Toriyama, M.; Kitajima, K. A major flagellum sialoglycoprotein in sea urchin sperm contains a novel polysialic acid, an 2→9)-linked poly-N-acetylneuraminic acid chain, capped by an 8-O-sulfated sialic acid residue. Glycobiology. 2004, 14, 827−840.
    15. Miyata, S.; Sato, C.; Kitamura, S.; Toriyama, M.; Vacquier, V. D.; Kitajima, K.; Flagellasialin: A novel sulfated {alpha}2,9-linked polysialic acid glycoprotein of sea urchin sperm flagella. Glycobiology. 2006, 16, 1229−1241.
    16. Slomiany, B. L.; Kojima, K.; Banas-Gruszka, Z.; Murty, V. L.; Galicki, N. I.; Slomiany, A. Characterization of the sulfated monosialosyltriglycosylceramide from bovine gastric mucosa, Eur. J. Biochem. 1981, 119, 647−650.
    17. Slomiany, A.; Kojima, Banas-Gruszka, K. Z.; Slomiany, B. L. Structure of a novel sulfated sialoglycosphingolipid from bovine gastric mucosa. Biochem. Biophys. Res. Commun. 1981, 100, 778−784.
    18. Kitazume-Kawaguchi, S.; Inoue, S.; Inoue, Y.; Lennarz, W. J. Identification of sulfated oligosialic acid units in the O-linked glycan of the sea urchin egg receptor for sperm. Proc. Natl. Acad. Sci. USA., 1997, 94, 3650−3655.
    19. a) Lennarz, W. J. In Sialobiology and Other Novel Forms of Glycosylation; Inoue, Y., Lee, Y. C., Troy, F. A., II, Eds.; Gakushin Publishing Co.: Osaka, 1999; pp 1−5. b) Kitazume, S.; Kitajima, K.; Inoue, S.; Haslam, S. M.; Morris, H. R.; Dell, A.; Lennarz, W. J.; Inoue, Y. The Occurrence of Novel 9-O-sulfated N-glycolylneuraminic acid-capped 2→5-Oglycolyl-linked oligo/polyNeu5Gc chains in sea urchin egg cell surface glycoprotein. J. Biol. Chem. 1996, 271, 6694−6701.
    195
    20. Ren, C.-T.; Chen, C.-S.; Wu, S.-H. Synthesis of a sialic acid dimer derivative, 2’-O-Benzyl Neu5Ac--(2→5)-Neu5Gc. J. Org. Chem. 2002, 67, 1376−1379.
    21. Fan, G. T.; Lee, C. C.; Fang, J. M.; Lin, C. C. Stereoselective synthesis of Neu5Ac(2→5)Neu5Gc: The building block of oligo/Poly(→5-OglycolylNeu5Gc2→) chains in sea urchin egg cell surface glycoprotein. J. Org. Chem. 2002, 67, 7565−7568.
    22. Marra, A.; Sinay, P. Stereoselective synthesis of 2-thioglycosides of N-acetylneuraminic acid. Carbohydr. Res. 1989, 190, 317−322.
    23. McAuliffe, J. C.; Rabuka, D.; Hindsgaul, O. Synthesis of O-glycolyl-linked neuraminic acids through a spirocyclic intermediate. Org. Lett. 2002, 4, 3067−3069.
    24. Ren, C. T.; Chen, C. S.; Yu, Y. P.; Tsai, Y. F.; Lin, P. Y.; Chen, Y. J.; Zou, W.; Wu, S. H. Synthesis of -(2,5)Neu5Gc oligomers. Chem. Eur. J. 2003, 9, 1085−1095.
    25. Tamai, H.; Ando, H.; Tanaka, H.- N.; Yabe, R. H.; Yabe, T.; Ishida, H.; Kiso, M. The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata. Angew. Chem. Int. Ed. 2011, 50, 2330−2333.
    26. Brook, M. A.; Chan, T. H. A simple procedure for the esterification of carboxylic Acids. Synthesis 1983, 3, 201−203.
    27. Travis, B. R.; Narayan, R. S.; Borhan, B. Osmium tetroxide-promoted catalytic oxidative cleavage of olefins: An organometallic ozonolysis. J. Am. Chem. Soc. 2002, 124, 3824− 3825.
    28. a) Ress, D. K.; Linhardt, R. J. Sialic acid Donors: Chemical Synthesis and Glycosylation. Curr. Org. Synth. 2004, 1, 31−46; b) Meo, C. D.; Priyadarshani, U. C-5 modifications in N-acetyl-neuraminic acid: scope and limitations. Carbohydr. Res. 2008, 343, 1540−1552.
    196
    29. Mucin glycopeptides with Tn or sTn-antigen have been synthesized, see a) Kuduk, S. D.; Schwarz, J. B.; Chen, X.-T.; Glunz, P. W.; Sames, D.; Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J. Synthetic and immunological studies on clustered modes of mucin-related Tn and TF O-linked antigens: The preparation of a glycopeptide-based vaccine for clinical trials against prostate cancer. J. Am. Chem. Soc. 1998, 120, 12474−12485. b) Schwarz, J. B.; Kuduk, S. D.; Chen, X.-T.; Sames, D.; Glunz, P.W.; Danishefsky, S. J. A broadly applicable method for the efficient synthesis of -O-linked glycopeptides and clustered sialic acid residues. J. Am. Chem. Soc. 1999, 121, 2662−2673. c) Winterfeld, G. A.; Schmidt, R. R. Nitroglycal Concatenation: A broadly applicable and efficient approach to the synthesis of complex O-glycans. Angew. Chem. Int. Ed. 2001, 40, 2654−2657. d) Tanaka, H.; Adachi, M.; Takahashi, T. One-pot synthesis of sialo-containing glycosyl amino acids by use of an N-trichloroethoxycarbonyl--thiophenyl sialoside. Chem. Eur. J. 2005, 11, 849−862. e) Okamoto, R.; Souma, S.; Kajihara, Y. Efficient synthesis of MUC4 sialoglycopeptide through the new sialylation using 5-acetamido-neuraminamide donors. J. Org. Chem. 2008, 73, 3460−3466.
    30. Demchenko, A. V.; Boons, G.-J. A novel direct glycosylation approach for the synthesis of dimers of N-acetylneuraminic acid. Chem. Eur. J. 1999, 5, 1278−1283.
    31. Ando, H.; Koike, Y.; Ishida, H.; Kiso, M. Extending the possibility of an N-Troc-protected sialic acid donor toward variant sialo-glycoside synthesis. Tetrahedron Lett. 2003, 44, 6883−6886.
    32. a) Lin, C.-C.; Huang, K.-T.; Lin, C.-C. N-Trifluoroacetyl sialyl phosphite donors for the synthesis of (2→9) oligosialic acid. Org. Lett. 2005, 7, 4169−4172. b) Meo, C. D.;
    197
    Demchenko, A. V.; Boons, G.-J. A stereoselective approach for the synthesis of -sialosides. J. Org. Chem. 2001, 66, 5490−5497.
    33. a) Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. The thioglycoside and glycosyl phosphite of 5-azido sialic acid: Excellent donors for the -glycosylation of primary hydroxyl groups. Angew. Chem., Int. Ed. 2001, 40, 2900−2903. b) Lu, K.-C.; Tseng, S.-Y.; Lin, C.-C. 5-Azido neuraminic acid thioglycoside as sialylation donor. Carbohydr. Res. 2002, 337, 755−760.
    34. Tanaka, K.; Goi, T.; Fukase, K. Highly efficient sialylation towards (2→3) and (2→6)-Neu5Ac-Gal synthesis: significant ‘fixed dipole effect’ of N-phthalyl group on a-selectivity. Synlett. 2005, 2958−2962.
    35. Sherman, A. A.; Yudina, O. N.; Shashkov, A. S.; Menshov, V. M.; Nifant’ev, N. E. Synthesis of Neu5Ac-and Neu5Gc-(2→6)-lactosamine 3-aminoprpyl glycosides. Carbohydr. Res. 2001, 330, 445−458.
    36. a) Tanaka, H.; Nishiura, Y.; Takahashi, T. Stereoselective synthesis of oligo--(2,8)-sialic acids. J. Am. Chem. Soc. 2006, 128, 7124−7125. b) Farris, M. D.; Meo, C. D. Application of 4, 5-O, N-oxazolidinone protected thiophenyl sialosyl donor to the synthesis of -sialosides. Tetrahedron Lett. 2007, 48, 1225−1227. c) Li, W.; Crich, D. O-Sialylation with N-acetyl-5-N, 4-O-carbonyl-protected thiosialoside donors in dichloromethane: facile and selective cleavage of the oxazolidinone ring. J. Org. Chem. 2007, 72, 2387−2391. d) Li, W.; Crich, D. -Selective Sialylations at -78o C in nitrile solvents with a 1-adamantanyl thiosialoside. J. Org. Chem. 2007, 72, 7794−7797. e) Tanaka, H.; Tateno, Y.; Nishiura, Y.; Takahashi, T. Efficient synthesis of an  (2, 9) trisialic acid by one-pot glycosylation and polymer-assisted deprotection. Org. Lett. 2008,
    198
    10, 5597−5600. (f) Tanaka, H.; Nishiura, Y.; Takahashi, T. Stereoselective synthesis of (2, 9) di-to tetrasialic acids, using a 5, 4-N, O- carbonyl protected thiosialoside. J. Org. Chem. 2009, 74, 4383−4386. g) Xing, G.-W.; Chen, L.; Liang, F.-F. Facile synthesis of tumor-associated carbohydrate antigen ganglioside GM3 from sialic Acid, lactose, and serine. Eur. J. Org. Chem. 2009, 2009, 5963−5970.
    37. a) Sugita, T.; Higuchi, R.; A facile preparation of the methyl 2-thioglycoside of N-glycolylneuraminic acid, an efficient donor of NeuGc. Tetrahedron Lett. 1996, 37, 2613−2614. b) Sugita, T.; Kan, Y.; Nagaregawa, Y.; Miyamoto, T.; Higuchi, R. Synthesis of a hematoside analog containing phytosphingosine and -hydroxyfatty acid. J. Carbohydr. Chem. 1997, 16, 917–925.
    38. Shull, B. K.; Wu, Z.; Koreeda, M. A convenient, highly efficient one-pot preparation of peracetylated glycals from reducing sugars. J. Carbohydr. Chem. 1996, 15, 955–964.
    39. Lemieux, R. U.; Ratcliffe, R. M. The azidonitration of tri-O-acetyl-D-galactal. Can. J. Chem. 1979, 57, 1244–1251.
    40. Schultz, M.; Kunz, H. Synthetic O-glycopeptides as model substrate for glycosyltransferases. Tetrahedron: Asymmetry 1993, 4, 1205–1220.
    41. Rosen, T.; Lico, I. M.; Chu, D. T.W. A convenient and highly chemoselective method for the reductive acetylation of azides. J. Org. Chem. 1988, 53, 1580–1582.
    42. Jan, M.-D.; Weng, S.-S.; Lin, C.-C.; Chen, C.-T.; Lin, C.-C. O-Isopropylidenation of carbohydrates catalyzed by vanadyl triflate. Carbohydr. Res. 2006, 341, 1948–1953.
    43. Tanaka, H.; Adachi, M.; Takahashi, T. One-Pot Synthesis of Sialo-Containing Glycosyl Amino Acids by Use of an N-Trichloroethoxycarbonyl--thiophenyl Sialoside. Chem. Eur. J. 2005, 11, 849 – 862.
    199
    44. Al-Horani, R. A.; Desai, U. R.; Chemical sulfation of small molecules−Advances and challenges. Tetrahedron. 2010, 66, 2907–2918,
    45. a) Kerns, R. J.; Linhardt, R. J.; Selective N-sulfation of glucosamine derivatives using phenyl chlorosulfate in non-Aqueous solvent. Synth. Commun. 1996, 26, 2671–2680. b) Abdel-Malik, M. M.; Perlin, A. S. Reactions of phenyl chlorosulfate at OH-2 and OH-3 of aldohexopyranose derivatives. Competing substitution and displacement reactions. Carbohydr. Res. 1989, 190, 39–52.
    46. Huibers, M.; Manuzi, A.; Rutjes, F. P. J. T.; van Delft, F. L. A sulfitylation-oxidation protocol for the preparation of sulfates. J. Org. Chem. 2006, 71, 7473–7476.
    47. Karst, N. A.; Islam, T. F.; Avci, F. Y.; Linhardt, R. J. Trifluoroethylsulfonate protected monosaccharides in glycosylation reactions. Tetrahedron Lett. 2004, 45, 6433–6437.
    48. Simpson, L. S.; Widlanski, T. S. Trifluoroethylsulfonate protected monosaccharides in glycosylation reactions. J. Am. Chem. Soc. 2006, 128, 1605–1610.
    49. a) Ingram,L. J.; Desoky, A.; Ali, A. M.; Taylor, S. D. O-and N-sulfations of carbohydrates using sulfuryl imidazolium salts. J. Org. Chem. 2009, 74, 6479–6485. b) A. Y. Desoky, S. D. Taylor, Multiple and regioselective introduction of protected sulfates into carbohydrates using sulfuryl imidazolium salts. J. Org. Chem. 2009, 74, 9406–9412. c) J. Chen, B. Yu, Effective protection of the N-sulfate of glucosamine derivatives with the 2, 2, 2-trichloroethyl group. Tetrahedron Lett. 2008, 49, 1682–1685.
    50. Morley, T. J.; Withers, G. Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J. Am. Chem. Soc., 2010, 132, 9430−9437.
    200
    51. Yamakawa, N.; Sato, C.; Miyata, S.; Maehashi, E.; Toriyama, M.; Sato, N.; Furuhata, K.; Kitajima, K. Development of sensitive chemical and immunochemical methods for detecting sulfated sialic acids and their application to glycoconjugates from sea urchin sperm and eggs. Biochimie. 2007, 89, 1396−1408.
    52. Huang, L.-D.; Lin, H.-J.; Huang, P.-H.; Hsiao, W.-C.; Reddy, L. V. R.; Fu, S.-L.; Lin, C.-C. Synthesis of serine-based glycolipids as potential TLR4 activators. Org. Biomol. Chem. 2011, 9, 2492−2504.
    53. Yu, H.; Yu, H.; Karpel, R.; Chen, X. Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg. Med. Chem. 2004, 12, 6427−6435.
    54. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Junru, W.; chen, X. Efficient chemoenzymatic synthesis of sialyl Tn-antigen and derivatives. Chem. Commun. 2011, 47, 8691−8693.
    55. Lin, C.-C.; Lin, C.-H.; Wong, C.-H. Sialic acid aldolase-catalyzed condensation of pyruvate and N-substituted mannosamine: a useful method for the synthesis of N-substituted sialic acid. Tetrahedron Lett. 1997, 38, 2649−2652.
    56. Kawai, Y.; Takemoto, M.; Oda, Y.; Kakehi, K.; Ohta, Y.; Yamaguchi, S.; Miyake, M. Inhibition of in vitro fertilization of mouse gametes by sulfated sialic acid polymers. Biol. Pharm. Bull. 2000, 23, 936–940.
    57. Kimura, K.; Mori, S.; Tomita, K.; Ohno, K.; Takahashi, K.; Shigeta, S.; Terada, M. Antiviral activity of NMSO3 against respiratory syncytial virus infection in vitro and in vivo. Antiviral. Res. 2000, 47, 41–51

    Prospective:
    1. Slomiany, A.; Kojima, Banas-Gruszka, K. Z.; Slomiany, B. L. Structure of a novel
    sulfated sialoglycosphingolipid from bovine gastric mucosa. Biochem. Biophys. Res.
    Commun. 1981, 100, 778−784.
    2. Prokazova, N.V.; Mikhailov, A.T.; Kocharov, S.L.; Malchenko, L.A.; Zvezdina, N.D.;
    Buznikov, G.; Bergelson, L.D. Unusual gangliosides of eggs and embryos of the sea
    urchin Strongylocentrotus intermedius. Structure and density-dependence of surface
    localization. Eur. J. Biochem. 1981, 115, 671−677.
    3. Slomiany, B. L.; Kojima, K.; Banas-Gruszka, Z.; Murty, V. L.; Galicki, N. I.; Slomiany,
    A. Characterization of the sulfated monosialosyltriglycosylceramide from bovine gastric
    mucosa, Eur. J. Biochem. 1981, 119, 647−650.
    203
    4. Nieduszynski, I. A.; Huckerby, T. N.; Dickenson, J. M.; Brown, G. M.; Tai, G. H.; Morris, H. G.; Eady, S. There are two major types of skeletal keratan sulphates. Biochem J. 1990, 271, 243–5.
    5. Tai, G. H.; Nieduszynski, I. A.; Fullwood, N. J.; Huckerby, T. N. Human corneal keratan sulfates. J. Biol. Chem. 1997, 272, 28227–31.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE