研究生: |
方懷德 Fang, Hwai-Der |
---|---|
論文名稱: |
Hydrothermal Route to the Preparation of Diffusion Barriers on Te-based Thermoelements |
指導教授: |
廖建能
Liao, Chien-Neng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 擴散阻絕層 、熱電材料 、無電鍍鎳 、碲化銅 |
外文關鍵詞: | diffusion barrier, thermoelectric material, electroless nickel, copper telluride |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The overall performance of a thermoelectric device partially relies on the structural integrity of its diffusion barrier, preventing solder from reacting with the thermoelements. Currently, electroless nickel is the standard industrial choice, but the fact that the nickel barrier is depleted at two fronts, forming both NiTe and Ni3Sn4 phases, is troublesome. A novel hydrothermal process in the preparation of α-CuTe diffusion barrier, based on simple displacement chemistry, is found to be effective in suppressing the growth of SnTe intermetallics only when an excess of Cu6Sn5 precipitates accumulate near the reaction interface. The fast diffusion of copper in bismuth telluride prevents the formation of a stable layered barrier. Nonetheless, the proposed hydrothermal method could be used to deposit a seed layer on elemental tellurium prior to electroless nickel plating
熱電元件的整體性能與防止焊錫與熱電材料發生反應的擴散阻絕層之結構完整性密切相關。雖然無電鍍鎳是目前業界製作熱電模組之首選材料,但是無可避免在無電鍍鎳兩端會因焊接反應以及後續操作情況下逐漸被消耗形成NiTe 與Ni3Sn4介金屬化合物,最後將進一步影響到元件的效能。本研究根據簡單置換化學反應所開發的水熱法可成功製備α-CuTe擴散阻絕層。若在焊錫中具有過量的Cu6Sn5析出物存在於焊接反應界面附近將可有效的抑制SnTe介金屬化合物的生成。然而,由於銅在碲化鉍材料的快速擴散反應,因此無法在焊錫/碲化鉍反應界面形成同樣的層狀結構。儘管如此,本研究所提出利用水熱法製備的α-CuTe層將可用來當作在沈積無電鍍鎳前於碲元素基材上所沉積的種子層。
1. G. J. Snyder, Brief History of Thermoelectrics, http://www.thermoelectrics.caltech.edu/, date accessed July, 2010
2. D. Silverman, The California Energy Crisis, http://www.physics.uci.edu/~silverma/crisis.html, date accessed July, 2010
3. Y. Bao, Thermoelectric Technology Assessment, ARTI, Report No. 10120-01, 2007.
4. S. Leo, M. Abdullah, K. Teoh, K. Ting and C. Tang, (2006).
5. C. N. Liao and C. H. Lee, J. Mater. Res. 23 (12), 3303-3308 (2008).
6. V. Semenyuk, presented at the Thermoelectrics, 2001. Proceedings ICT 2001. XX International Conference on, 2001 (unpublished).
7. Y. C. Lan, D. Z. Wang, G. Chen and Z. F. Ren, Appl. Phys. Lett. 92 (10), 3 (2008).
8. O. D. Iyore, T. H. Lee, R. P. Gupta, J. B. White, H. N. Alshareef, M. J. Kim and B. E. Gnade, Surf. Interface Anal. 41 (5), 440-444 (2009).
9. T. Kacsich, E. Kolawa, J. P. Fleurial, T. Caillat and M. A. Nicolet, J. Phys. D-Appl. Phys. 31 (19), 2406-2411 (1998).
10. R. P. Gupta, O. D. Iyore, K. Xiong, J. B. White, K. Cho, H. N. Alshareef and B. E. Gnade, Electrochem. Solid State Lett. 12 (10), H395-H397 (2009).
11. Y. B. D. Ryabinin, V. Ponomarev, Y. Maslyakov, V. Evseev, in International Conference on Thermoelectrics (Corvallis, Oregon, USA, 2008).
12. P. T. Bolger and D. C. Szlag, Clean Technologies and Environmental Policy 2 (4), 209-219 (2001).
13. A. S. Kushner, Electrolytic and electroless nickel, <http://www.allbusiness.com/electronics/electronics-overview/10551818-1.html>, date accessed July, 2010
14. H. Wada, K. Takahashi and T. Nishizaka, Journal of Materials Science Letters 9 (7), 810-812 (1990).
15. G. Cui, N. Li, D. Li and M. Chi, J. Electrochem. Soc. 152 (10), C669-C674 (2005).
16. T. AESF, AESF Third Electroless Plating Symposium. (1986).
17. R. Duncan, Plating and surface finishing 83 (11), 65-69 (1996).
18. G. O. Mallory, Electroless Plating: Fundamentals and Applications. (The Society, 1990).
19. K.-L. Lin and J.-W. Hwang, Mater. Chem. Phys. 76 (2), 204-211 (2002).
20. J. T. W. Jappes, B. Ramamoorthy and P. K. Nair, Journal of Materials Processing Technology 169 (2), 308-313 (2005).
21. X.-C. Wang, W.-B. Cai, W.-J. Wang, H.-T. Liu and Z.-Z. Yu, Surface and Coatings Technology 168 (2-3), 300-306 (2003).
22. Y.-S. Hsiao, W.-T. Whang, S.-C. Wu and K.-R. Chuang, Thin Solid Films 516 (12), 4258-4266 (2008).
23. T.-K. Tsai and C.-G. Chao, Appl. Surf. Sci. 233 (1-4), 180-190 (2004).
24. Y. Wu, C. Wan and Y. Wang, J. Electron. Mater. 34 (5), 541-550 (2005).
25. J.-W. Yoon, J.-H. Park, C.-C. Shur and S.-B. Jung, Microelectron. Eng. 84 (11), 2552-2557 (2007).
26. J. N. Balaraju, S. M. Jahan, A. Jain and K. S. Rajam, J. Alloy. Compd. 436 (1-2), 319-327 (2007).
27. J. Jang, D. Frear, T. Lee and K. Tu, J. Appl. Phys. 88, 6359 (2000).
28. A. Kumar, M. He, Z. Chen and P. S. Teo, Thin Solid Films 462-463, 413-418 (2004).
29. Wikipediacontributors, Reactivity series, date accessed 2010/07/05
30. M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands and A. M. Stacy, J. Electrochem. Soc. 149 (11), C546-C554 (2002).
31. R. Mitchell, Ask a scientist, www.stoller-eser.com/nie/Weeks/AAS1-8LR.pdf, date accessed, July 2010
32. T. Nakamura, Patent No. 6,841,476 (2005).
33. S. Sen, K. P. Muthe, N. Joshi, S. C. Gadkari, S. K. Gupta, Jagannath, M. Roy, S. K. Deshpande and J. V. Yakhmi, Sensors and Actuators B: Chemical 98 (2-3), 154-159 (2004).
34. S. J. Wang and C. Y. Liu, J. Electron. Mater. 32 (11), 1303-1309 (2003).
35. P. Carcia, F. Kalk, P. Bierstedt, A. Ferretti, G. Jones and D. Swartzfager, J. Appl. Phys. 64, 1671 (1988).
36. S. Louadi, A. Yassin, H. Bros and R. Castanet, J. Alloy. Compd. 224 (2), 351-354 (1995).
37. K. C. Mills and M. J. Richardson, Thermochimica Acta 6 (5), 427-438 (1973).
38. J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, J. Appl. Phys. 88 (11), 6359-6363 (2000).
39. C. Lu, H. Tseng, C. Chang, T. Huang and C. Liu, Appl. Phys. Lett. 96, 232103.
40. R. O. Carlson, J. Phys. Chem. Solids 13 (1-2), 65-70 (1960).
41. J. B. Maclachlan, W. H. Kruesi and D. J. Fray, Journal of Materials Science 27 (15), 4223-4229 (1992).
42. J. L. Cui, J. Alloy. Compd. 415 (1-2), 216-219 (2006).
43. G. Henshaw, I. Parkin and G. Shaw, Journal of the Chemical Society, Dalton Transactions 1997 (2), 231-236 (1997).