簡易檢索 / 詳目顯示

研究生: 張皓婷
Chang, Hao Ting
論文名稱: 核醫影像用於質子治療中腫瘤定位與質子射程驗證
Nuclear Medicine Imaging for Tumor Localization and Proton Range Verification in Proton Therapy
指導教授: 莊克士
Chuang, Keh Shih
林信宏
Lin, Hsin Hon
口試委員: 趙自強
Chao, Tsi Chian
詹美齡
Jan, Meei Ling
蕭穎聰
Hsiao, Ing Tsung
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 單光子發射導引質子治療質子治療射程驗證即時加馬射束準直儀偵檢器加馬攝影機
外文關鍵詞: Emission-Guided Proton Therapy, Proton therapy, Range verification, Prompt gamma, Collimator-based camera, Gamma camera
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子治療是近年於各國方興未艾的癌症治療技術。質子射束具有布拉格峰 (Bragg peak, BP)的物理特性,可提供腫瘤組織較高的劑量且大幅降低周圍的正常組織的傷害。然而,質子射程的不準確性將會造成治療效果不佳。因此應用射程驗證來排除這些不準確性在質子治療過程中扮演非常重要的角色。近年來應用閃爍造影儀設備於質子治療射程驗證的概念已被相繼提出與實現,透過該設備接收治療過程中病人體內放出的瞬發光子 (prompt gamma, PG)訊號可做為質子射程驗證的重要依據。
    本研究目標為設計出一套質子治療射程評估用的光子造影儀器,同時結合加馬攝影機 (gamma camera)平面造影驗證腫瘤擺位的幾何精準度與準直儀閃爍偵檢器 (collimator-based camera)進行質子射程驗證,藉由該項驗證工具的開發,將可幫助確保幾何位置並進行質子治療射程驗證。
    本研究可分成三大部分,首先針對prompt gamma系統比較兩種collimator-based camera (multi-slit及knife-edge)在質子治療射程驗證的性能表現,分別就能窗選擇、射束能量、射程位移之偵測等參數進行評估,最後選擇適用的collimator-based camera應用在第三部分。在第二部分中,我們先行評估gamma camera於質子治療的可行性,以矩形假體探討不同腫瘤大小、腫瘤移動及腫瘤深度的影響。最後再結合兩種驗證系統共同評估並以單光子斷層掃描 (Single-photon emission computed tomography, SPECT)做為標準影像,此驗證法不但能驗證腫瘤的幾何結構,還可以提供質子治療射程驗證的評估資訊。
    實驗結果顯示兩種collimator-based camera系統對於位移的偵測皆有很好的精準度,其中knife-edge系統有較高的偵測效率且具有較低的中子污染問題。而第二部分結果證明對於腫瘤位移的偵測,相較於knife-edge系統gamma camera可提供更高的精準度。最後結合gamma camera與knife-edge射程驗證系統,結果顯示SPECT作為腫瘤定位的標準影像是可行的,不過gamma camera的掃描方式需要被改良,使系統有更精準的腫瘤定位。
    整體而言,本實驗所提出的光子造影儀器於質子治療中是可行的,不過中子污染對於collimator-based camera的影響是相當大的,因此中子去除技術的發展在未來是相當重要的,此外,核子醫學影像對於腫瘤的定位是可以信賴的,因此只要能夠克服gamma camera影像品質的問題,該項驗證工具的開發將不是難事,期望此套光子造影儀器於臨床質子治療射程評估中可提供更精準的治療效果。


    Proton therapy is gaining popularity in the world. Proton beam possesses the physical property of Bragg peak that can be used to provide higher radiation dose to tumor and spares the normal tissues. However, the inaccuracy in proton range limits the advantages of Bragg peak. The proton range verification plays a very important role in the proton therapy. In recent years, camera equipped with collimators (multi-slit and knife-edge slit collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification.
    The aim of the work is to develop a system which combines a gamma camera for tumor localization and collimator-based camera for proton range verification.
    This study can be separated into three stages. GATE/GEANT4 will be used as a simulation tool of the proton therapy in all stages. The purpose in the first stage is to compare the performance of multi-slit collimator and knife-edge slit collimator in range verification. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. In the second stage, we evaluate the feasibility of gamma camera for tumor localization in proton therapy. The tumor size, phantom shift and the depth of tumor localization will be studied in a rectangular PMMA phantom. Finally, in the third stage, we combine gamma camera with the selected range verification system (from stage one) to evaluate this method based on a simulated tumor embedded in a Zubal phantom.
    Results in the first stage indicate that both collimator systems have good response to the phantom shift, and knife-edge collimator system achieve higher detection efficiency leading to a smaller deviation in predicting range. In the stage two, gamma camera achieves better accuracy of detecting the phantom shift than knife-edge system. The final stage indicate this method is feasible with SPECT reference image. However, the quality of gamma camera image should be improved by other scanning modes.
    We conclude that combining gamma camera and collimator-based camera have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the collimator-based camera, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

    摘要 i Abstract iii 致謝 v 目錄 vii 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 實驗緣起 4 2.2 質子治療射程不確性 7 2.2.1 質子治療在非移動靶器官中的精確度和不確定性 9 2.2.2 質子治療在移動靶器官中的精確度和不確定性 14 2.3 質子治療射程驗證方法 17 2.3.1 PET Image 18 2.3.2 Prompt gamma Imaging 23 2.4 Prompt gamma偵測方法 24 2.4.1 Compton camera system 25 2.4.2 Collimator-based camera 27 2.5 功能性影像在放射治療中的應用 30 第三章 材料與方法 32 3.1 蒙地卡羅模擬及物理參數設定 32 3.2 應用閃爍偵檢器進行質子治療射程驗證之準直儀比較 36 3.2.1 Prompt gamma imaging的模擬結構設置 36 3.2.2 Prompt gamma訊號收集及數據分析 37 3.3 應用伽馬射線攝影機平面造影驗證腫瘤的幾何精準度 39 3.3.1 Siemens E.CAM雙頭閃爍射影機 39 3.3.2 蒙地卡羅之假體設計 42 3.3.3 假體影像品質評估分析 43 3.4 腫瘤幾何和與質子射程的相互驗證 44 3.4.1 實驗流程與設計 44 3.4.2 模擬結構設置及影像收集 46 3.4.3 質子射束物理參數設定 49 3.4.4 蒙地卡羅腦部假體設計 49 3.4.5 影像評估分析 52 第四章 結果 54 4.1 應用閃爍偵檢器進行質子治療射程驗證其準直儀之比較 54 4.1.1 訊號收集曲線及能窗選擇 54 4.1.2 質子射束能量 59 4.1.3 假體大小 60 4.1.4 射程位移之偵測 61 4.2 應用伽馬射線攝影機平面造影驗證腫瘤的幾何精準度 63 4.2.1 評估E.CAM對於腫瘤大小及活度濃度的偵測限制 64 4.2.2 評估E.CAM偵測腫瘤移動的能力 67 4.2.3 評估E.CAM偵測腫瘤深度的能力 68 4.3 腫瘤幾何和與質子射程的相互驗證 69 4.3.1 腫瘤幾何誤差評估 69 4.3.2 質子治療幾何誤差與射程驗證 74 第五章 討論與結論 77 5.1 應用閃爍偵檢器進行質子治療射程驗證其準直儀之比較 77 5.2 應用伽馬射線攝影機平面造影驗證腫瘤的幾何精準度 79 5.3 腫瘤幾何和與質子射程的相互驗證 80 5.4 臨床應用評估與未來展望 84 第六章 參考文獻 85

    Balter J M, Ten Haken R K, Lawrence T S, Lam K L and Robertson J M 1996 Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing International Journal of Radiation Oncology Biology. Physics. 36 167-174
    Barai S, Bandopadhayaya G, Julka P, Malhotra A, Bal C and Dhanpathi H 2004 Imaging using Tc99m-tetrofosmin for the detection of the recurrence of brain tumour: A comparative study with Tc99m-glucoheptonate Journal of Postgraduate Medicine 50 89
    Biegun A K, Seravalli E, Lopes P C, Rinaldi I, Pinto M, Oxley D C, Dendooven P, Verhaegen F, Parodi K and Crespo P 2012 Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study Physics in Medicine and Biology 57 6429
    Bowsher J, Yan S, Roper J, Giles W and Yin F-F 2014 Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT Medical Physics 41 010701
    Britton K R, Starkschall G, Tucker S L, Pan T, Nelson C, Chang J Y, Cox J D, Mohan R and Komaki R 2007 Assessment of gross tumor volume regression and motion changes during radiotherapy for non–small-cell lung cancer as measured by four-dimensional computed tomography International Journal of Radiation Oncology Biology. Physics. 68 1036-1046
    Bruzzi M, Blumenkrantz N, Feldt J, Heimann J, Sadrozinski H F, Seiden A, Williams D C, Bashkirov V, Schulte R and Menichelli D 2007 Prototype tracking studies for proton CT Nuclear Science, IEEE Transactions on 54 140-145
    Cambraia Lopes P, Pinto M, Simoes H, Biegun A, Dendooven P, Oxley D, Parodi K, Schaart D R and Crespo P Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE,2012), vol. Series): IEEE) pp 3864-70
    Fan Q, Nanduri A, Yang J, Yamamoto T, Loo B, Graves E, Zhu L and Mazin S 2013 Toward a planning scheme for emission guided radiation therapy (EGRT): FDG based tumor tracking in a metastatic breast cancer patient Medical physics 40 081708
    Fiedler F, Shakirin G, Skowron J, Braess H, Crespo P, Kunath D, Pawelke J, Pönisch F and Enghardt W 2010 On the effectiveness of ion range determination from in-beam PET data Physics in Medicine and Biology 55 1989
    Goitein M 1977 The measurement of tissue heterodensity to guide charged particle radiotherapy International Journal of Radiation Oncology Biology. Physics. 3 27-33
    Grevillot L, Bertrand D, Dessy F, Freud N and Sarrut D 2011 A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4 Physics in Medicine and Biology 56 5203
    Gueth P, Dauvergne D, Freud N, Létang J, Ray C, Testa E and Sarrut D 2013 Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy Physics in Medicine and Biology 58 4563
    Herring D 1970 The degree of precision required in the radiation dose delivered in cancer radiotherapy: Enviro-med)
    Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, Frisson T, Grevillot L, Guigues L and Maigne L 2011 GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy Physics in Medicine and Biology 56 881
    Jiang H, Seco J and Paganetti H 2007 Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations Medical Physics 34 1439-49
    Knopf A, Parodi K, Bortfeld T, Shih H and Paganetti H 2009 Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans Physics in Medicine and Biology 54 4477
    Kormoll T, Fiedler F, Schöne S, Wüstemann J, Zuber K and Enghardt W 2011 A Compton imager for in-vivo dosimetry of proton beams-a design study Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 626 114-119
    Kozlovsky B, Murphy R J and Ramaty R 2002 Nuclear deexcitation gamma-ray lines from accelerated particle interactions The Astrophysical Journal Supplement Series 141 523
    Kuikka J, Yang J and Kiiliäinen H 1998 Physical performance of the Siemens E. CAM gamma camera Nuclear medicine communications 19 457-462
    Kurfess J, Johnson W, Kroeger R and Phlips B AIP Conference Proceedings,2000), vol. Considerations for the next compton telescope mission. In AIP Conference Proceedings (pp. 789-793)
    Langen K and Jones D 2001 Organ motion and its management International Journal of Radiation Oncology Biology. Physics. 50 265-78
    Lazaro A, Girbau D and Villarino R 2010 Weighted centroid method for breast tumor localization using an UWB radar Progress In Electromagnetics Research B 24 1-15
    Lee E, Polf J C, Mackin D S, Beddar S, Dolney D, Ainsley C, Kassaee A and Avery S 2014 Study of the Angular Dependence of a Prompt Gamma Detector Response during Proton Radiation Therapy International Journal of Particle Therapy 1 731-44
    Li H, Zhang L, Dong L, Sahoo N, Gillin M T and Zhu X R 2010 A CT-based software tool for evaluating compensator quality in passively scattered proton therapy Physics in Medicine and Biology 55 6759
    Lomax A J, Böhringer T, Bolsi A, Coray D, Emert F, Goitein G, Jermann M, Lin S, Pedroni E and Rutz H 2004 Treatment planning and verification of proton therapy using spot scanning: initial experiences Medical Physics 31 3150-3157
    Lu H-M 2008 A point dose method for in vivo range verification in proton therapy Physics in Medicine and Biology 53 N415
    Maccabee H, Madhvanath U and Raju M 1969 Tissue activation studies with alpha-particle beams Physics in Medicine and Biology 14 213
    Mackin D, Peterson S, Beddar S and Polf J 2012 Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy Physics in Medicine and Biology 57 3537
    Min C-H, Kim C H, Youn M-Y and Kim J-W 2006 Prompt gamma measurements for locating the dose falloff region in the proton therapy Applied Physics Letters 89 183517
    Min C H, Lee H R, Kim C H and Lee S B 2012 Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy Medical Physics 39 2100-2107
    Nishio T, Miyatake A, Ogino T, Nakagawa K, Saijo N and Esumi H 2010 The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy International Journal of Radiation Oncology Biology. Physics. 76 277-286
    Otsu N 1975 A threshold selection method from gray-level histograms Automatica 11 23-27
    Paganetti H 2011 Proton therapy physics. CRC Press, 2011
    Paganetti H 2012 Range uncertainties in proton therapy and the role of Monte Carlo simulations Physics in medicine and biology 57 R99
    Parodi K and Bortfeld T 2006 A filtering approach based on Gaussian-powerlaw convolutions for local PET verification of proton radiotherapy Phys Med Biol 51 1991-2009
    Parodi K, Paganetti H, Shih H A, Michaud S, Loeffler J S, DeLaney T F, Liebsch N J, Munzenrider J E, Fischman A J and Knopf A 2007a Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy International Journal of Radiation Oncology Biology. Physics. 68 920-934
    Parodi K, Paganetti H, Shih H A, Michaud S, Loeffler J S, DeLaney T F, Liebsch N J, Munzenrider J E, Fischman A J, Knopf A and Bortfeld T 2007b Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy International Journal of Radiation Oncology, Biology, Physics 68 920-934
    Peterson S, Robertson D and Polf J 2010 Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy Physics in Medicine and Biology 55 6841
    Phillips G W 1995 Gamma-ray imaging with Compton cameras Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 99 674-677
    Pinto M, Bajard M, Brons S, Chevallier M, Dauvergne D, Dedes G, De Rydt M, Freud N, Krimmer J and La Tessa C 2014 Absolute prompt-gamma yield measurements for ion beam therapy monitoring Physics in Medicine and Biology 60 565
    Pinto M, Bajard M, Brons S, Chevallier M, Dauvergne D, Dedes G, De Rydt M, Freud N, Krimmer J and La Tessa C 2015 Absolute prompt-gamma yield measurements for ion beam therapy monitoring Physics in Medicine and Biology 60 565
    Polf J, Peterson S, Ciangaru G, Gillin M and Beddar S 2009a Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study Physics in Medicine and Biology 54 731
    Polf J C, Peterson S, Ciangaru G, Gillin M and Beddar S 2009b Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study Phys Med Biol 54 731-743
    Richter C, Pausch G, Barczyk S, Priegnitz M, Keitz I, Thiele J, Smeets J, Vander Stappen F, Bombelli L and Fiorini C 2016 First clinical application of a prompt gamma based in vivo proton range verification system Radiotherapy and Oncology
    Robert C, Dedes G, Battistoni G, Böhlen T, Buvat I, Cerutti F, Chin M, Ferrari A, Gueth P and Kurz C 2013 Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes Physics in Medicine and Biology 58 2879
    Robertson D, Polf J C, Peterson S W, Gillin M T and Beddar S 2011 Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy Physics in Medicine and Biology 56 3047
    Rodrigues S, Tome B, Abreu M, Santos N, Mendes P R and Peralta L 2007 Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera arXiv preprint arXiv:0711.2577
    Roellinghoff F, Richard M-H, Chevallier M, Constanzo J, Dauvergne D, Freud N, Henriquet P, Le Foulher F, Létang J and Montarou G 2011 Design of a Compton camera for 3D prompt-γ imaging during ion beam therapy Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 648 S20-S23
    Roper J, Bowsher J and Yin F-F 2009 On-board SPECT for localizing functional targets: a simulation study Medical Physics 36 1727-1735
    Schaffner B and Pedroni E 1998 The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power Physics in Medicine and Biology 43 1579
    Schmid G, Deleplanque M, Lee I, Stephens F, Vetter K, Clark R, Diamond R, Fallon P, Macchiavelli A and MacLeod R 1999 Erratum to" A gamma-ray tracking algorithm for the GRETA spectrometer"[Nucl. Instr. and Meth. A 430 (1999) 69-83] Nuclear Instruments and Methods in Physics Research A 434 481
    Schmid S, Landry G, Thieke C, Verhaegen F, Ganswindt U, Belka C, Parodi K and Dedes G 2015 Monte Carlo study on the sensitivity of prompt gamma imaging to proton range variations due to interfractional changes in prostate cancer patients Physics in Medicine and Biology 60 9329
    Schulder M, Maldjian J A, Liu W-C, Holodny A I, Kalnin A T, Mun I K and Carmel P W 1998 Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex Journal of Neurosurgery 89 412-418
    Smeets J, Roellinghoff F, Prieels D, Stichelbaut F, Benilov A, Fiorini C, Peloso R, Basilavecchia M, Frizzi T and Dehaes J 2012 Prompt gamma imaging with a slit camera for real-time range control in proton therapy Physics in Medicine and Biology 57 3371
    Smith A R 2009 Vision 20/20: Proton therapy Medical physics 36 556-68
    Smitsmans M H, Pos F J, de Bois J, Heemsbergen W D, Sonke J-J, Lebesque J V and van Herk M 2008 The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients International Journal of Radiation Oncology Biology. Physics. 71 1279-1286
    Solomon C J and Ott R J 1988 Gamma ray imaging with silicon detectors—a Compton camera for radionuclide imaging in medicine Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 273 787-792
    Sonke J-J, Lebesque J and Van Herk M 2008 Variability of four-dimensional computed tomography patient models International Journal of Radiation Oncology Biology. Physics. 70 590-598
    Teodoro A and Gonçalves H 2011 Extraction of estuarine/coastal environmental bodies from satellite data through image segmentation techniques Image Segmentation 435458
    Urie M, Goitein M and Wagner M 1984 Compensating for heterogeneities in proton radiation therapy Physics in Medicine and Biology 29 553
    Verburg J M and Seco J 2014 Proton range verification through prompt gamma-ray spectroscopy Physics in Medicine and Biology 59 7089
    Verburg J M, Shih H A and Seco J 2012 Simulation of prompt gamma-ray emission during proton radiotherapy Physics in Medicine and Biology 57 5459
    Vynckier S, Vanneste F, Richard F, Bol A, Michel C and Wambersie A 1989 Control of patient positioning for fast neutron therapy using positron emission tomography The British Journal of Radiology 62 1031-1032
    Yamaya T, Yoshida E, Inaniwa T, Sato S, Nakajima Y, Wakizaka H, Kokuryo D, Tsuji A, Mitsuhashi T and Kawai H 2011 Development of a small prototype for a proof-of-concept of OpenPET imaging Physics in Medicine and Biology 56 1123
    Yan S, Bowsher J, Tough M, Cheng L and Yin F-F 2014 A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems Medical Physics 41 112504
    Yan S, Bowsher J and Yin F-F 2013 A line-source method for aligning on-board and other pinhole SPECT systems Medical Physics 40 122501
    Young R J, Ghesani M V, Kagetsu N J and DeRogatis A J 2005 Lesion size determines accuracy of thallium-201 brain single-photon emission tomography in differentiating between intracranial malignancy and infection in AIDS patients American Journal of Neuroradiology 26 1973-1979
    Zhang M, Flynn R T, Mo X and Mackie T R 2012 The energy margin strategy for reducing dose variation due to setup uncertainty in intensity modulated proton therapy (IMPT) delivered with distal edge tracking (DET) Journal of applied clinical medical physics/American College of Medical Physics 13 3863
    Zhu X and Fakhri G E 2013 Proton therapy verification with PET imaging
    Zubal I G, Harrell C R, Smith E O, Rattner Z, Gindi G and Hoffer P B 1994 Computerized three‐dimensional segmented human anatomy Medical Physics 21 299-302

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE