簡易檢索 / 詳目顯示

研究生: 賴岳生
Yueh-Sheng Lai
論文名稱: 奈米銀/鈀微粒之化學合成與其特性分析之研究
Study on Chemical Synthesis and Characteristic Analysis of Nanosized Silver/Palladium Particles
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 141
中文關鍵詞: 奈米銀奈米鈀銀合金粒子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這論文中主要是研究以甲醛利用化學還原法,合成奈米鈀銀合金及銀膠體,其中PVP對於沈澱機制的影響是最主要研究的項目。於合成奈米鈀銀合金膠體部分,經實驗發現,鈀離子及PVP之間會有很強的作用力,導致於經由共沈澱出來的產物,鈀金屬的含量會比原吸附在PVP高分子鏈上少。利用此實驗條件可以合成粒徑為2-3 nm的鈀銀合金膠體,且經由實驗分析可以得知,所合成出來之組成為內部鈀金屬含量較高的粒子。隨著PVP保護劑用量的提高,所合成出來鈀銀合金粒子之粒徑有變大的趨勢,且粒徑的分佈亦有變廣的傾向。
    在合成銀膠體部分,將探討使用不同分子量的PVP當作保護劑(分子量分別為:8,000、29,000及55,000)對於所合成出來銀膠體之穩定能力。由實驗結果顯示出,此高分子保護粒子避免其相互產生凝聚的效果,與在室溫下所使用促進還原反應進行的鹼液有著莫大的關係。當反應以氫氧化鈉水溶液當作鹼液,其造成還原反應的速率是非常快速的,導致於僅有較高分子量的PVP當作保護劑才具保護效果,而所合成出來之粒子,其粒徑大約在20 nm左右。另一方面,當以碳酸鈉水溶液當作鹼液,整個反應路徑將會被改變,且還原反應的速率可以有效的被減緩;在此情況下,分子量為8000之PVP保護劑具有最佳的保護效果,所合成出來的銀膠體,其粒子之粒徑僅有5 nm,且粒徑分佈會趨於單一分佈,增加PVP保護劑的用量,僅能對銀粒子之粒徑產生些微的影響。此外,這一些所合成出來的奈米鈀銀合金及銀膠體可以做其燒結行為之探討。


    The synthesis of both nanosized palladium-silver and silver colloids by chemical reduction using formaldehyde was investigated in this thesis. The effect of polyvinylpyrrolidone (PVP) on the precipitation mechanism was specifically studied. It was found that due to the strong interaction between Pd ions and PVP molecules, the Pd content in the co-precipitated products would be less than corresponding ones obtained in the absence of PVP molecules. This method could produce palladium-silver alloy colloids of 2~3 nm with a Pd rich core. Increasing PVP quantity would increase the palladium-silver alloy particles, and also make the size distribution much broader.
    Polyvinyl pyrrolidone (PVP) of three different molecular weights (MW = 8,000, 29,000, 55,000) were studied in this thesis on their ability to stabilize silver colloids. Our results indicated that their effects against agglomeration would depend to a great extent on the alkaline used for the promotion of reduction reaction at ambient temperature. When NaOH was used, the reaction rate was very fast and hence only PVP with large molecular weight could produce silver colloids of sizes around 20 nm. On the other hand, when Na2CO3 was used, the reaction path was significantly changed and slowed down as well. Under this circumstance, PVP with MW of 8,000 offered the best protection against agglomeration. It could produce silver colloids of only 5 nm and the size distribution was nearly uni-modal. Increasing PVP quantity had only slight effect on silver size. In addition, the sintering behavior was also briefly studied for these nanosized palladium-silver alloy and silver colloids.

    摘要 X ABSTRACT X1 第一章 序論 1 第二章 文獻回顧 4 2-1 合成奈米粒子的方法 4 2-2 多元醇法合成奈米微粒 7 2-3 水溶液法合成奈米微粒 10 2-4 溶膠-凝膠法(sol-gel) 15 2-5 水熱法(hydrothermal) 15 2-6 噴霧鍛燒法(spray pyrolysis) 16 2-7 電化學法(electrochemical) 17 第三章 研究方法與步驟 20 3-1 實驗藥品 20 3-2 實驗儀器 21 3-3 實驗步驟 22 3-3.1 液相化學合成法製備奈米級鈀銀合金粒子及銀粒子 22 3-3.2 反應液的檢測 25 3-3.3 合成粒子之清洗與再分散 26 第四章 奈米鈀銀合金微粒之實驗結果與討論 28 4-1 奈米鈀銀合金微粒的合成 28 4-1.1 鹼液濃度對鈀/銀共沈澱之影響 28 4-1.2 鈀/銀共沈澱的程序之探討 36 4-1.3 合金的鑑定 43 4-2 保護劑濃度對於鈀銀合金粒子之粒徑的影響 47 4-3 奈米鈀銀微粒的處理與其燒結行為之研究 53 4-3.1 奈米鈀銀微粒的分離、純化與再分散 53 4-3.2 奈米鈀銀合金燒結行為之研究 59 4-4 探討所合成出的鈀銀合金粒子之組成 66 4-4.1 利用EPMA探討鈀銀合金之組成 66 4-4.2 利用XRD鑑定合金的組成 71 4-4.3 製備鈀/銀組成重量比為77/23之鈀銀合金粒子 79 第五章 奈米銀微粒之實驗結果與討論 86 5-1 奈米銀微粒的合成 86 5-1.1 不同濃度的PVP保護劑(分子量為8,000、29,000及55,000)對銀微粒粒徑之影響 86 5-1.2 不同濃度之碳酸鈉水溶液對銀微粒粒徑之影響 91 5-1.3 以碳酸鈉水溶液當反應促進劑探討分子量為8,000之PVP對銀微粒生成之保護效果 98 5-1.4 不同分子量的PVP保護劑保護機制之探討 101 5-1.5 奈米銀微粒在紫外光-可見光區的吸收行為之研究 107 5-2 奈米銀微粒燒結行為之研究 113 5-2.1 利用SEM觀察粒子之燒結行為 113 5-2.2 利用XRD觀察粒子之燒結行為 128 第六章 結論 135 第七章 參考文獻 138

    Antonella Balerna, Giulio Deganello, Leonarda Liotta, Alessandro Longo, Antonino Martorana, Carlo Meneghini, Settimio Mobilio, Anna Maria Venezia, " ESAFS and XRD study of Pd-Ag bimetallic catalysts supported in pumice from organometallic precursors.", Journal of Non-Crystalline Solids, 293-295, 682 (2001)
    Chien-Yu Huang, Hui-Jean Chiang, Ju-Chun Huang and Shyang-Roeng Sheen, “Synthesis of Nanocrystallne Ag-Pd Alloys by Chemical Reduction Method”, NanoStructured Materials, 10(8), 1393-1400 (1998)
    Chinmay Damle, Ashavani Kumar, and Murali Sastry, “Synthesis of Ag/Pd Nanoparticles and Their Low-Temperature Alloying within Thermally Evaporated Fatty Acid Films”, J. Phys. Chem.B, 106, 297-302 (2002)
    Chou, K. S. and C. Y. Ren, "Synthesis of Nanosized Silver Particles by Chemical Reduction Method", Materials Chemistry and Physics, 64, 241 ( 2000 )
    Hidefumi Hirai, Noboru Yakura, Yoko Seta, Shinya Hodoshima, “Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst”, Reactive & Functional Polymers, 37, 121-131 (1998)
    Hirai, H., Y. Nakao and N. Toshima, "Preparation of Colloidal Transition Metals in Polymers by Reduction with Alcohols or Ethers", J. Macromol. Sci-Chem.,A 13(6),727 (1979)
    H. N. Vasan, and C. N. R. Rao, “Nanoscale Ag-Pd and Cu-Pd Alloys”, J. Mater. Chem. 5(10), 1755-1757 (1995)
    Hwai Peng Choo, Kong Yong Liew, and Hanfan Liu, “Factors affecting the size of polymer stabilized Pd nanoparticles”, Journal of Materials Chemistry, 12, 934-937 (2002)
    Kunio Esumi, Miyori Wakabayashi, Kanjiro Torigoe, " Preparation of colloidal silver-Palladium alloys by UV-irradiation in mixtures of acetone and 2-propanol. ", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 55 (1996)
    Michaelis, M. and A. Henglein, "Composite Pd-Ag Particles in Aqueous Solution", J. Phys. Chem., 98, 6212 (1994)
    M. T. Reetz and W. Helbig, “Size-selective Synthesis of Nanostructured Transition Metal Cluster”, J. Am. Chem. Soc.,116, 7401 (1994)
    Naoki Toshima, Masafumi Harada, Yohinao Yamazki, and Kiyotaka Asakura, " Catalytic Activity and Structrual Analysis of Polymer-Protected Au-Pd Bimetallic Clusters Prepared by the Simultaneous Reduction of HAuCl4 and PdCl2. ", J. Phys. Chem., 96, 9927 (1992)
    P. Nash and A. Nash, ASM Hankbook Vol. 3 Alloy Phase Diagrams, ed. By H. Baker, ASM International, Materials Park, Ohio (1992)
    Pluym, T. C. and T. T. Kodas, "Silver-Palladium Alloy Particle Production by Spray Pyrolysis", J. Mater. Res., 10(7), 166 ( 1995 )
    R. Ueyama, K. Kamada, M. Harada, T. Ueyama, T. Yamamota, K. Kuribaysahi, K. Koumoto, T. Shiosaki," Low temperature synthesis of silver-palladium alloy powders internal electrodes for multilayer ceramic divices." Journal of Materials Science., 36, 371 (2001)
    Silvert, P. Y., V. Vijayakrishnan, P. Vibert, R. Herrera-Urbina and K. T. Elhsissen,"Synthesis and Characterization of Nanoscale Ag-Pd Alloy Particles", Nanostructures Materials, 7(6), 611 (1996)
    Torigoe, K. and K. Esumi, "Preparation of Bimetallic Ag-Pd Colloids from Silvert(l) Bis(oxalato)palladate(ll)", Langmuir, 9,1664 (1993)
    Toshima, N., M. Harada, Y. Yamazaki and K. Asakura, "Catalytic Activity and Structural Analysis of Polymer-Protected Au-Pd Bimetallic Clusters Prepared by the Simultaneous Reduction of HauCl4 and PdCl2", J. Phys. Chem., 96, 9927 (1992)
    Vasan, R. N. and C. N. R. Rao, “Nanoscale Ag-Pd and Cu-Pd Alloys”, J. Mater. Chem., 5(10), (1995)
    Wells, S., S. W. Charles, S. Morup, S. Linderoyh, J. van Woneterghem, J. Larsen and M. B. Madsen, “A Study of Fe-B and Fe-Co-B Alloy Particles produced by Reduction with Borohydride”, J. Phys.: Condens. Matter 1, 8199 (1989)
    Yu-Ying Yu, Ser-Sing Chang, Chien-Liang Lee, and C. R. Chris Wang, “Gold Nanorods: Electrochemical Synthesis and Optical Properties”, Journal of Physical Cheistry B, 101, 6661-6664 (1997)
    Zhang Zongtao, Bin Zhao, and Linimg Hu, “PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes”, Journal of Solid State Chemistry, 121, 105-110 (1996)
    任鏘諭, “奈米金屬微粒之製備及性質研究”, 國立清華大學碩士論文 (1999)
    陳信宏, “奈米銀微粒之化學合成與應用研究”, 國立清華大學碩士論文 (2002)
    張光偉, “有機-無機混成材料及其應用趨勢”, 化工資訊, 3, 36-43 (1998)
    郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 物理雙月刊, 二十三卷六期, 614-624 (2001)
    吳國卿, 董玉蘭, “奈米粒子材料的觸媒性質”, 化工資訊, 5, 42-46 (1999)
    呂英治, 洪敏雄, “奈米材料及製成介紹”, 科儀新知, 二十二卷六期 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE