簡易檢索 / 詳目顯示

研究生: 莊瑋倫
Juang, Wei-Luen
論文名稱: Polyhedra which vertices are inverted into that of well-known polyhedra
正多面體其頂點反演位於多面體
指導教授: 全任重
Chuan, Jen-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 19
中文關鍵詞: Polyhedra
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章中,我們將討論正多面體的頂點對於空間中任一球體反演後所組成的多面體,其邊長延伸所產生的交點以及這些共點的共線行為。最後利用Desargues定理對文中的各項性質與關係做結論。


    In this article, we will discuss the collinear property of the intersection points which are generated by the extended sides of the polyhedron which vertices are consisted of the inversion of vertices of the regular polyhedron, and the behavior of these concurrent points. Finally, we conclude the relations of these properties by Desargues' theorem.

    Contents Thanks 2 1 Introduction 3 2 Preliminary 4 3 The concurrent property 5 3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 An example: cube . . . . . . . . . . . . . . . . . . 5 3.3 On regular polyhedron . . . . . . . . . . . . . . . 7 4 Collinear of concurrent points 8 4.1 Desargues' theorem of regular tetrahedron . . . . 8 4.2 Combination of P8 . . . . . . . . . . . . . . . . . 11 4.3 Collinear of P12 and P20 . . . . . . . . . . . . . . 12 5 Further collinear property 13 6 Conclusion 16 References 19

    References
    [1] Smith. J. V. (1982). Geometrical And Structural Crystallography. John
    Wiley and Sons.
    [2] Coxeter. Harold Scott MacDonald (1969). Introduction to Geometry
    (2nd ed.). New York: John Wiley & Sons.
    [3] Hilbert. David & Cohn-Vossen. Stephan (1952). Geometry and the
    Imagination (2nd ed.). Chelsea Publishing.
    [4] David E. Blair (2000). Inversion Theory and Conformal Mapping.
    American Mathematical Society.
    [5] Victor A. Zalgaller. (1969). Convex Polyhedra with Regular Faces. Con-
    sultants Bureau.
    [6] Jr-Yu Lin. (2009). Concurrency of inversed circles in Johnson solids.
    Master's thesis. National Tsing Hua University, Taiwan.
    1

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE