簡易檢索 / 詳目顯示

研究生: 蔡健文
Tsai, Chien-Wen
論文名稱: 綠膿桿菌B136-33之外分泌蛋白酶對於毒性與調節外分泌蛋白所扮演的角色
Role of secreted proteases in virulence and proteolytic processing of secretome in Pseudomonas aeruginosa B136-33
指導教授: 張晃猷
Chang, Hwan-You
口試委員: 賴怡琪
Lai, Yi-Chyi
林靖婷
Lin, Ching-Ting
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 綠膿桿菌外分泌蛋白
外文關鍵詞: Pseudomonas aeruginosa B136-33, secreted proteases, proteolytic
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綠膿桿菌為一伺機性感染的病原菌,經由傷口、尿道、呼吸道及眼角膜等途徑感染免疫缺陷的病患,造成急性或慢性的感染。綠膿桿菌會分泌數種毒力因子,例如廣泛被探討彈性蛋白酶 B,其在細菌感染過程中扮演重要角色。然而,外分泌蛋白酶彼此之間的修飾以及對其他外分泌蛋白之調節尚未全盤明瞭。在本研究中,我們測定綠膿桿菌 B136-33 及其蛋白酶突變株 ΔpaaP、ΔlasA、ΔlasB 及 ΔprpL 之生長、分解受質蛋白、刺激免疫反應、附著、穿透細胞之能力等,亦解析外分泌蛋白體以了解蛋白酶 PaaP、LasA、LasB 及 PrpL 對於外分泌蛋白之修飾及調節所扮演的角色。結果顯示,突變株 ΔlasB 及 ΔprpL 在低營養培養基中的生長顯著地較為緩慢。突變株 ΔlasB 形成生物膜之能力以及分解數種受質蛋白 (如層黏蛋白、巢蛋白、運鐵蛋白、α-2 巨球蛋白等) 的能力皆明顯下降。四株蛋白酶突變株貼附及穿透細胞的能力皆顯著減弱。以細菌上清液刺激巨噬細胞誘發免疫反應方面,ΔlasB刺激巨噬細胞分泌較多的 IL-6 而 ΔprpL 則使巨噬細胞分泌較少的 IL-6。比較蛋白酶突變株與野生株之外分泌蛋白組成及其含量,ΔpaaP、ΔlasA、ΔlasB 及 ΔprpL 分別有 3、37、60 及 38 種蛋白質的含量與野生株不同。其中,與細菌生長及調節宿主免疫蛋白相關的蛋白 (如:免疫調節金屬蛋白酶、胜肽酶、參與能量合成之酵素等) 在突變株 ΔpaaP、ΔlasA、ΔlasB 及 ΔprpL 中的含量皆明顯減少。綜合以上結果,綠膿桿菌之蛋白酶除了是重要的毒力因子外,也在調節本身的外分泌蛋白及宿主的蛋白質扮演重要的角色。本研究除了進一步瞭解綠膿桿菌蛋白酶的功能,並能提供資訊以尋找可降低毒性蛋白酶活性的物質,減緩綠膿桿菌感染的程度。


    Pseudomonas aeruginosa is an opportunistic pathogen that can cause both acute and chronic infections in immunocompromised patients through wound, urethra, respiratory tract and cornea. P. aeruginosa can secrete several virulence factors such as the well-known elastase B that plays an important role in bacterial infection. However, the proteolytic processing of the secretome of P. aeruginosa remains largely unknown. In this study, we examined several physiology and pathogenesis proportion of P. aeruginosa B136-33, ΔpaaP, ΔlasA, ΔlasB and ΔprpL, such as growth rate, ability of substrate degradation, stimulation of the immune response, and bacterial adhesion to and penetration into epithelial cells. We also determined the secretome of P. aeruginosa wild type strain and protease mutant strains to understand how PaaP, LasA, LasB and PrpL modulate extracellular proteins. The result showed that ΔlasB and ΔprpL grew at a slower rate in low nutrition medium. The protease mutant ΔlasB displayed a decreased ability of biofilm formation and degradation of several substrates (eg, laminin, entactin, alpha-2-macroglobulin and Transferrin). Bacterial adhesion to and penetration into Int 407 cell were significantly decreased in ΔpaaP, ΔlasA, ΔlasB, and ΔprpL. In the aspect of immune response, macrophage secreted higher concentration of IL-6 after ΔlasB supernatant stimulated, and lower concentration of IL-6 after ΔprpL supernatant stimulated. According to the result of secretome analysis, protease mutant strain ΔpaaP, ΔlasA, ΔlasB, and ΔprpL displayed 3, 37, 60 and 38 secreted proteins, which were different from that of the wild type strain, respectively. The proteins associated with bacterial growth and regulating host immune proteins were significantly decreased in four mutant strains, such as immunomodulatory metalloproteinases, peptidases and enzymes involved in energy synthesis. Taken together, P. aeruginosa proteases are not only important role of virulence factors, but important role in proteolytic processing of the secretome and modulating host proteins. These findings can lead to comprehensive understanding of the role of P. aeruginosa proteases and providing information for searching targets to reduce P. aeruginosa infection.

    中文摘要 I Abstract II 縮寫字對照表 IV 目錄 VI 表目錄 IX 圖目錄 X 附錄 XI 壹、 前言 1 1.1. 綠膿桿菌 (Pseudomonas aeruginosa) 1 1.2. 綠膿桿菌的毒力因子 1 1.3. Pseudomonas aeruginosa aspartyl aminopeptidase (PaaP) 胺肽酶 2 1.4. Elastase A (LasA) 彈性蛋白酶 A 2 1.5. Elastase B (LasB) 彈性蛋白酶 B 3 1.6. PvdS-regulated endoprotease, lysyl class (PrpL) PvdS調節的內切蛋白酶,賴氨酰類 4 1.7. 綠膿桿菌的移動能力 5 1.8. 研究目的 6 貳、 材料與實驗方法 7 1. 菌株與培養條件 7 2. 細胞株與培養條件 7 3. 綠膿桿菌生理特性 8 3.1. 生長曲線 8 3.2. 生物膜定量分析 8 3.3. 胞外多醣產量分析 8 3.4. 泳動性測試 9 3.5. 群體移動能力測試 9 3.6. 抽動性運動測試 9 4. 綠膿桿菌對宿主細胞之影響 10 4.1. 酪蛋白酶活性測試 10 4.2. 彈性蛋白酶活性測試 10 4.3. 溶血性測試 10 4.4. 膠原蛋白酶活性測試 11 4.5. 細菌上清液刺激小鼠巨噬細胞發炎反應 11 4.6. 酵素結合免疫吸附分析 (ELISA) 檢測發炎因子IFN-α表現量測試 12 4.7. 酵素結合免疫吸附分析 (ELISA) 檢測發炎因子IL-6表現量測試 12 4.8. 細胞毒殺測試 13 4.9. 細菌貼附細胞測試 13 4.10. 細菌穿透細胞測試 14 4.11. 細菌培養於含有胞外基質 (Extracellular matrix) 培養基 14 4.12. 細菌培養於含有小牛血清蛋白 (Fetal bovine serum) 培養基 15 5. 蛋白質鑑定分析 15 5.1. 使用三氯乙酸 (Trichloroacetic acid) 濃縮細菌上清液 15 5.2. 使用離心過濾器濃縮細菌上清液 16 5.3. 聚丙烯醯胺膠體電泳 (SDS Poly acrylamide gel electrophoresis) 16 5.4. 綠膿桿菌與細胞外基質反應後透過液相層析串聯式質譜 (Liquid Chromatograph Tandem Mass/ Mass) 分析 17 參、 結果 18 1. 蛋白酶突變株ΔlasB 及 ΔprpL 在低營養培養基中生長速率下降 18 2. 蛋白酶突變株呈現不同的移動能力 18 3. 突變株 ΔlasB 形成生物膜之能力下降 19 4. 突變株 ΔlasB 之胞外多醣生成量增加 19 5. ΔlasA 及 ΔlasB 分解彈性蛋白能力下降而 ΔprpL 分解彈性蛋白能力上升 20 6. ΔlasB 分解膠原蛋白、酪蛋白以及溶血能力下降 21 7. ΔlasB 及 ΔprpL 降解小鼠胞外基質蛋白及小牛血清蛋白有顯著影響 21 8. ΔpaaP、ΔlasA、ΔlasB 及 ΔprpL 貼附及穿透人類腸道上皮細胞 Int 407 的能力下降 23 9. ΔpaaP、ΔlasA、ΔlasB 及 ΔprpL 突變株對巨噬細胞 RAW 264.7 之毒殺能力無顯著影響 23 10. 蛋白酶突變株刺激巨噬細胞 RAW 264.7 分泌細胞激素的產量改變 24 11. 蛋白酶突變株 ΔlasB 對於其外分泌蛋白的修飾或調節有顯著影響 25 肆、 討論 27 伍、 參考文獻 32

    1. Eggleston, M., Agents for the Treatment of Pseudomonas aeruginosa Infections. Infection Control, 1987. vol.8: p. 380-383.
    2. Bedernjak, A.F., Zaytsev, A. V., Babolat, M., Cellier, M., James, A. L., Orenga, S., Perry, J. D., Groundwater, P. W., Anderson, R. J., Synthesis and Evaluation of Novel 7- and 8-Aminophenoxazinones for the Detection of beta-Alanine Aminopeptidase Activity and the Reliable Identification of Pseudomonas aeruginosa in Clinical Samples. Journal of Medicinal Chemistry, 2016. vol.59(10): p. 4476-4487.
    3. Barrios, C.C., Oliver, Lucía Ciancotti, A New Treatment Choice against Multi-Drug Resistant Pseudomonas aeruginosa: Doripenem. Journal of Bacteriology & Parasitology, 2014. vol.5(5).
    4. de Bentzmann, S., Plesiat, P., The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environmental Microbiology, 2011. vol.13(7): p. 1655-1665.
    5. Chuang, C.H., Wang, Y.H., Chang, H.J., Chen, H.L., Huang, Y.C., Lin, T.Y., Ozer, E.A., Allen, J.P., Hauser, A.R., Chiu, C.H., Shanghai fever a distinct Pseudomonas aeruginosa. BMJ Journals, 2013. vol.63(5): p. 736-743.
    6. Halder P, M.K., Mukhopadhyay M, Debnath B, Shanghai Fever: A Fatal Form of Pseudomonas Aeruginosa Enteric Disease. The Indian Journal of Pediatrics, 2015. vol.52(10): p. 896-898.
    7. van der Plas, M.J., Bhongir, R. K., Kjellstrom, S., Siller, H., Kasetty, G., Morgelin, M., Schmidtchen, A., Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nature Communications, 2016. vol.7: p. 11567.
    8. Hauser, A.R., Pseudomonas aeruginosa: so many virulence factors, so little time. Critical Care Medicine, 2011. vol.39(9): p. 2193-2194.
    9. Ben Haj Khalifa, A., Moissenet, D., Vu Thien, H., Khedher, M., Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation. Annales de biologie clinique, 2011. vol.69(4): p. 393-403.
    10. HOBDEN, J.A., Pseudomonas aeruginosa Proteases and Corneal Virulence. DNA and Cell Biology, 2002. vol.21(5-6): p. 391-396.
    11. Leid, J.G., Willson, C. J., Shirtliff, M. E., Hassett, D. J., Parsek, M. R., Jeffers, A. K., The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. The Journal of Immunology, 2005. vol.175(11): p. 7512-7518.
    12. Ghafoor, A., Hay, I. D., Rehm, B. H., Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied and Environmental Microbiology, 2011. vol.77(15): p. 5238-46.
    13. Boyd, A.C., Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. Journal of Industrial Microbiology 1995. vol.15(3): p. 162-168.
    14. Daniel J. Hassett , J.C., Bruce Trapnell , Sergei V. Lymar , John J. Rowe , Sang Sun Yoon , George M. Hilliard , Kislay Parvatiyar , Moneesha C. Kamani , Daniel J. Wozniak , Sung-Hei Hwang , Timothy R. McDermott , Urs A. Ochsner, Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways rethinking antibiotic treatment strategies and drug targets. Advanced Drug Delivery Reviews, 2002. vol.54(11): p. 1425-1433.
    15. Sarnovsky, R., Rea, J., Makowski, M., Hertle, R., Kelly, C., Antignani, A., Pastrana, D. V., Fitzgerald, D. J., Proteolytic cleavage of a C-terminal prosequence, leading to autoprocessing at the N Terminus, activates leucine aminopeptidase from Pseudomonas aeruginosa. The Journal of Biological Chemistry, 2009. vol.284(15): p. 10243-15253.
    16. Cahan, R., Axelrad, I., Safrin, M., Ohman, D. E., Kessler, E., A secreted aminopeptidase of Pseudomonas aeruginosa Identification, primary structure, and relationship to other aminopeptidases. The Journal of Biological Chemistry, 2001. vol.276(47): p. 43645-43652.
    17. Sakamoto, Y., Kondo, Hitoshi, Soda, Kenji, Spectrophotometric assay of aminopeptidase with thermostable alanine dehydrogenase from Bacillus stearothermophilus. Bioscience, Biotechnology, and Biochemistry, 2014. vol.58(9): p. 1675-1678.
    18. Gaur, R., Grover, Tripti, Sharma, Rita, Kapoor, Sanjay, Khare, Sunil K., Purification and characterization of a solvent stable aminopeptidase from Pseudomonas aeruginosa: Cloning and analysis of aminopeptidase gene conferring solvent stability. Process Biochemistry, 2010. vol.45(5): p. 757-764.
    19. Kida, Y., Higashimoto, Y., Inoue, H., Shimizu, T., Kuwano, K., A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cellular Microbiology, 2008. vol.10(7): p. 1491-1504.
    20. Efrat Kessler, M.S., Jean K. Gustin, Dennis E. Ohman, Elastase and the LasA protease of Pseudomonas aeruginosa are Ssecreted with their propeptides. The Journal Of Biological Chemistry, 1998. vol.273(13): p. 30225–30231.
    21. Grande, K.K., Gustin, J. K., Kessler, E., Ohman, D. E., Identification of critical residues in the propeptide of LasA protease of Pseudomonas aeruginosa involved in the formation of a stable mature protease. Journal of Bacteriol, 2007. vol.189(11): p. 3960-3968.
    22. Barequet, I.S., Ben Simon, G. J., Safrin, M., Ohman, D. E., Kessler, E., Pseudomonas aeruginosa LasA protease in treatment of experimental staphylococcal keratitis. Antimicrobial Agents and Chemotherapy, 2004. vol.48(5): p. 1681-1687.
    23. Dominique Coin, D.L., Jacques Bernillon, Micheline Guinand, Jean Wallach, LasA, alkaline protease and elastase in clinical strains of Pseudomonas aeruginosa quantification by immunochemical methods. Federation of European Microbiological Societies Immunology and Medical Microbiology, 1997. vol.18(3): p. 175-184.
    24. Kessler, E., Safrin, M., Blumberg, S., Ohman, D. E., A continuous spectrophotometric assay for Pseudomonas aeruginosa LasA protease (staphylolysin) using a two-stage enzymatic reaction. Anal Biochem, 2004. 328(2): p. 225-32.
    25. Efrat Kessler, M.S., Joan C. Olson, Dennis E. Ohman, Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. The Journal of Biological Chemistry, 1993. vol.268(10): p. 7503-7508.
    26. R. Hoge, A.P., F. Rosenau, S. Wilhelm, Weapons of a pathogen: Proteases and their role in virulence of Pseudomonas aeruginosa. 2010.
    27. J.E.Peters, S.J.P., A.Darzins, L.C.Freck, J.M.Saulnier, J.M.Wallach, D.R.Galloway, Further studies on Pseudomonas aeruginosa LasA: analysis of specificity. Molecular Microbiology, 1992. vol6(9): p. 1155-1162.
    28. Mariencheck, W.I., Alcorn, J. F., Palmer, S. M., Wright, J. R., Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. American Journal of Respiratory Cell and Molecular Biology, 2003. vol.28(4): p. 528-537.
    29. Casilag, F., Lorenz, A., Krueger, J., Klawonn, F., Weiss, S., Haussler, S., The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease AprA to prevent flagellin-mediated immune recognition. Infection and Immunity, 2015. vol.84(1): p. 162-71.
    30. Mariola Andrejkoa, M.M.-D., Effect of Pseudomonas aeruginosa elastase B on level and activity of immune proteins peptides of Galleria mellonella hemolymph. Journal of Insect Science, 2012. vol.12: p. 1536-2442.
    31. Dominique Leduc, N.B., Sophie de Bentzmann, Jean-Claude Rousselle, Abdelkader Namane, Michel Chignard, Dominique Pidard, The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. infection and immunity, 2007. vol.75(8): p. 3848-3858.
    32. Maria M. Thayer, K.M.F., David B. McKay, Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. The Journal of Biological Chemistry, 1990. vol.266(5): p. 2864-2471.
    33. LYNN RUST, E.C.P., BARBARA H. IGLEWSKI,, A continuous spectrophotometric assay for Pseudomonas aeruginosa. Analytical Biochemistry, 1995. vol.328(2): p. 225-232.
    34. Cathcart, G.R., Quinn, D., Greer, B., Harriott, P., Lynas, J. F., Gilmore, B. F., Walker, B., Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: a potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob Agents Chemother, 2011. vol.55(6): p. 2670-2678.
    35. Jie Zhu, X.C., Matthew Lardy, Kim D. Janda, Disarming Pseudomonas aeruginosa virulence factor LasB by leveraging a caenorhabditis elegans infection model. Chemistry & Biology, 2015. vol.22(4): p. 483-491.
    36. Ewa Ołdak, E.b.A.T., Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2005. vol.49(8): p. 3281–3288.
    37. Singh, B., Fleury, C., Jalalvand, F., Riesbeck, K., Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev, 2012. vol.36(6): p. 1122-80.
    38. Chung, A.E., Dong, Li-Jin, Wu, Chuanyue, Durkin, Marian E., Biological functions of entactin. Kidney International, 1993. vol.43(1): p. 13-19.
    39. LOUIS W. HECK, P.G.A., ROSE M. KULHAVY, KAZUYUKI MORIHARA, MICHAEL W. RUSSELL, JIRI F. MESTECKY, Degradation of IgA proteins by Pseudomonas aeruginosa elastase. The Journal of Immunology, 1990. vol.144(6): p. 2253-2257.
    40. Kuang, Z., Hao, Y., Walling, B. E., Jeffries, J. L., Ohman, D. E., Lau, G. W., Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. (PLoS) One Journal, 2011. vol.6(11): p. e27091.
    41. Bruce W. Elliott Jr., C.C., Isolation and characterization of a lysine-specific protease from Pseudomonas aeruginosa. The Journal of Biological Chemistry, 1986. vol.261(24): p. 11259-11265.
    42. Kim, E.J., Wang, W., Deckwer, W. D., Zeng, A. P., Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology, 2005. vol.151(4): p. 1127-38.
    43. Rawlings, N.D., Barrett, A. J., Bateman, A., MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2012. vol.40(Database issue): p. D343-50.
    44. Traidej, M., Marquart, M. E., Caballero, A. R., Thibodeaux, B. A., O'Callaghan, R. J., Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation. Journal Of Biological Chemistry, 2003. vol.278(4): p. 2549-53.
    45. Wilderman, P.J., Vasil, A. I., Johnson, Z., Wilson, M. J., Cunliffe, H. E., Lamont, I. L., Vasil, M. L., Characterization of an Endoprotease (PrpL) Encoded by a PvdS-Regulated gene in Pseudomonas aeruginosa. Infection and Immunity, 2001. vol.69(9): p. 5385-5394.
    46. Traidej, M., Caballero, Armando R., Marquart, Mary E., Thibodeaux, Brett A., O’Callaghan, Richard J., Molecular Analysis of Pseudomonas aeruginosa protease IV expressed in Pseudomonas putida. Investigative Opthalmology & Visual Science, 2003. vol.44(1): p. 190.
    47. Sonawane, A., Jyot, J., Ramphal, R., Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infection and Immunity, 2006. vol.74(12): p. 7035-7039.
    48. Tielker, D., Hacker, S., Loris, R., Strathmann, M., Wingender, J., Wilhelm, S., Rosenau, F., Jaeger, K. E., Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology, 2005. vol.151(Pt 5): p. 1313-1323.
    49. Peter N. Walsh, S.S.A., Proteases in blood clotting. Essays in Biochemistry, 2002. vol.38: p. 95-111.
    50. Lee S. Engel, J.M.H., Armando R. Caballero, Linda C. Green, and Richard J. O Callaghan, Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. The Journal of Biological Chemistry, 1998. vol.273(27): p. 16792-16797.
    51. Malloy, J.L., Veldhuizen, R. A., Thibodeaux, B. A., O'Callaghan, R. J., Wright, J. R., Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2005. vol.288(2): p. L409-18.
    52. Thibodeaux, B.A., Caballero, A. R., Dajcs, J. J., Marquart, M. E., Engel, L. S., O'Callaghan, R. J., Pseudomonas aeruginosa protease IV: a corneal virulence factor of low immunogenicity. Ocular Immunology and Inflammation, 2005. vol.13(2-3): p. 169-182.
    53. Marquart, M.E., O'Callaghan, R. J., Infectious keratitis: secreted bacterial proteins that mediate corneal damage. Journal of Ophthalmology, 2013. vol.2013: p. 9.
    54. Overhage, J., Bains, M., Brazas, M. D., Hancock, R. E., Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. Journal of Bacteriology, 2008. vol.190(8): p. 2671-1679.
    55. Overhage, J., Lewenza, S., Marr, A. K., Hancock, R. E., Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. Journal of Bacteriol, 2007. vol.189(5): p. 2164-2169.
    56. Tremblay, J., Deziel, E., Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics, 2010. vol.11(587): p. 1471-2164.
    57. Workentine, M.L., Sibley, C. D., Glezerson, B., Purighalla, S., Norgaard-Gron, J. C., Parkins, M. D., Rabin, H. R., Surette, M. G., Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. (PLoS) One Journal, 2013. vol.8(4): p. e60225.
    58. Rashid, M.H., Kornberg, A., Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2000. vol.97(9): p. 4885-4890.
    59. O'May, C., Tufenkji, N., The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Applied and Environmental Microbiology, 2011. vol.77(9): p. 3061-3067.
    60. Murray, T.S., Kazmierczak, B. I., Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. Journal of Bacteriology, 2008. vol.190(8): p. 2700-8.
    61. de Kievit, T.R., Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol, 2009. vol.11(2): p. 279-288.
    62. Rutherford, S.T., Bassler, B. L., Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med, 2012. vol.2(11).
    63. Cynthia B. Whitchurch, M.H., Susan P. Livingstona, Viji Krishnapillaib, John S. Mattick Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria GENE 1990. vol.101(1): p. 33-44.
    64. George A. O’Toole, R.K., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 1998. vol.30(2): p. 295-304.
    65. Mattick, J.S., Type IV pili and twitching motility. Annual Review of Microbiology, 2002. vol.56: p. 289-314.
    66. Burrows, L.L., Pseudomonas aeruginosa twitching motility: type IV pili in action. Annual Review of Microbiology, 2012. vol.66: p. 493-520.
    67. Marr, A.K., Overhage, J., Bains, M., Hancock, R. E., The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility. Microbiology, 2007. vol.153(2): p. 474-82.
    68. Ribet, D., Cossart, P., How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect, 2015. vol.17(3): p. 173-83.
    69. Ciofu, O., Mandsberg, L. F., Wang, H., Hoiby, N., Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. Federation of European Microbiological Societies Immunology and Medical Microbiology, 2012. vol.65(2): p. 215-225.
    70. Sousa, A.M., Pereira, M. O., Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs-A Review. Pathogens, 2014. vol.3(3): p. 680-703.
    71. Oxlund H, M.J., Viidik A, The role of elastin in the mechanical properties of skin. Biomechmics 1988. vol.21(3): p. 213-218.
    72. Norikazu Nishino , J.C.P., Pseudomonas aeruginosa elastase. The Journal of Biological Chemistry, 1979. vol.225(8): p. 3482-3486.
    73. BRUCE DIENER, L.C., JR, RICHARD S. BERK, In Vivo Studies with collagenase from Pseudomonas aeruginosa. Infection And Immunrry, 1973. vol.7(2): p. 212-217.
    74. Heck LW, M.K., McRae WB, Miller EJ, Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infection and Immunity, 1986. vol.51(1): p. 115-118.
    75. MARYK.JOHNSON, J.A., The role of hemolysin in corneal infections with Pseudomonas aeruginosa Invest. Ophthal .VisualSci., 1978. vol.17: p. 480-483.
    76. Christian Frantz, K.M.S., Valerie M. Weaver, The extracellular matrix at a glance. Journal of Cell Science 2012. vol.123: p. 4195-4200.
    77. Teti, A., Regulation of cellular functions by extracellular matrix. Journal of the American Society of Nephrology 1992. vol2(10): p. S83-87.
    78. Lyczak, J.B., Cannon, Carolyn L., Pier, Gerald B., Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2000. vol.2(9): p. 1051-1060.
    79. Arango Duque, G., Descoteaux, A., Macrophage cytokines: involvement in immunity and infectious diseases. Frontier in Immunology, 2014. vol.5: p. 491.
    80. ALAN R. HAUSER, J.N.E., Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells Infection and Immunity, 1999. vol.67(10): p. 5530-5537.
    81. MICHAEL PARMELY, A.G., MATTHEW CLABAUGH, REBECCA HORVAT, WEI-WEI ZHOU, Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. infection and immunity, 1990. vol.58(9): p. 3009-3014.
    82. TAYLOR, A., Aminopeptidases structure and function. The Federation of American Societies for Experimental Biology, 1993. vol. 7: p. 290-298.
    83. MS, L., Are bacterial proteases important virulence factors. journal of periodontal research, 1997. V.32: p. 126–132.
    84. Frees, D., Brondsted, L., Ingmer, H., Bacterial proteases and virulence. Subcell Biochem, 2013. vol.66: p. 161-92.
    85. Igor Mierau, E.R.S.K., Gerard Venema , Jan Kok, Casein and peptide degradation in lactic acid bacteria. Biotechnology and Genetic Engineering Reviews, 1997. vol.14: p. 279-301.
    86. Mann, E.E., Wozniak, D. J., Pseudomonas biofilm matrix composition and niche biology. Federation of European Microbiological Societies Microbiology Reviews, 2012. vol.36(4): p. 893-916.
    87. Bardoel, B.W., Hartsink, D., Vughs, M. M., de Haas, C. J., van Strijp, J. A., van Kessel, K. P., Identification of an immunomodulating metalloprotease of Pseudomonas aeruginosa (IMPa). Cell Microbiol, 2012. vol.14(6): p. 902-13.
    88. BORTH, W., Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. The Federation of American Societies for Experimental Biology, 1992. vol.6: p. 3345-3353.
    89. Abby Sewell, J.D., Michael Wehmann, Theresa Rowe, Rachida Bouhenni, Proteomic analysis of keratitis-associated Pseudomonas aeruginosa. Molecular Vision, 2014. vol.20: p. 1182-1191.
    90. Folders J, T.J., van Loon LC, Bitter W., Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. Journal Of Bacterlology 2000. vol.182(5): p. 1257-1263.
    91. Folders, J., Algra, J., Roelofs, M. S., van Loon, L. C., Tommassen, J., Bitter, W., Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol, 2001. 183(24): p. 7044-52.
    92. Hibbing, M.E., Fuqua, C., Parsek, M. R., Peterson, S. B., Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol, 2010. vol.8(1): p. 15-25.
    93. Tashiro, Y., Yawata, Yutaka, Toyofuku, Masanori, Uchiyama, Hiroo, Nomura, Nobuhiko, Interspecies interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes and Environments, 2013. vol.28(1): p. 13-24.
    94. Beaume, M., Kohler, T., Fontana, T., Tognon, M., Renzoni, A., van Delden, C., Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens. Frontiers in Microbiology, 2015. vol.6: p. 321.
    95. Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F., Mekalanos, J. J., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences 2006. vol.103(5): p. 1528-33.
    96. Basler, M., Ho, B. T., Mekalanos, J. J., Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell, 2013. vol.152(4): p. 884-894.
    97. Eva Boon, C.J.M., Chris Whidden, Dennis H.-J. Wong, Morgan G.I. Langille, Robert G. Beiko, Interactions in the microbiome: communities of organisms and communities of genes. Federation of European Microbiological Societies Microbiology Review, 2013. vol.38(1): p. 90-118.
    98. Mashburn, L.M., Jett, A. M., Akins, D. R., Whiteley, M., Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology & Parasitology, 2005. vol.187(2): p. 554-566.

    QR CODE