研究生: |
馬諾肯德 Manoj Kandel |
---|---|
論文名稱: |
半導體的新鍊金術:銅硒奈米粒子於癌症協同治療之應用 Harnessing Semiconductor Alchemy: Copper Selenide Nanoparticles for Synergistic Cancer Therapy |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
黃郁棻
Huang, Yu-Fen 謝明發 Hsieh, Ming-Fa 莊爾元 Chuang, Er-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 大腸癌 、硫化氫 、化學動力療法 、光熱治療 、癌症治療 |
外文關鍵詞: | Colorectal Cancer, Hydrogen Sulfide, Chemodynamic Therapy, Photothermal Therapy, Cancer Therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸直腸癌 (CRC) 是一種嚴重影響全球健康的惡性腫瘤,在所有癌症中其死亡率高居第二,由於不良預後和高復發率,大部分傳統治療方案的效果不甚理想。在過去十年中,出現大量針對大腸直腸癌治療和控制復發的研究,但大多數研究結果只在少數病例中達到治療標準,且伴隨非常低的預期生存率。奈米粒子為對抗大腸直腸癌提供了一條有前景的途徑,能夠精確的靶向癌細胞進行藥物釋放以及重塑腫瘤微環境,從而提高治療效果,同時最大限度地減少副作用。目前已經廣泛嘗試各種奈米顆粒用於藥物運輸和實現癌症治療,包括固體脂質奈米粒子、攜帶藥物的奈米載體、細胞膜包覆的奈米粒子、有機以及無機奈米粒子等,這些載體克服傳統藥物低腫瘤靶向性和療效不佳的問題。在各式載體中,又屬能夠活化、催化腫瘤微環境改變的無機奈米粒子有做為臨床治療方案的潛力。腫瘤組織在體內會建構出與一般組織不同的環境特性,以促進癌細胞增殖、遷移和侵襲,因此重塑腫瘤微環境可能是阻止腫瘤生長的有效方法之一。抑制癌細胞增殖和釋放有毒化合物的協同效果可以達到消除腫瘤的目的。
在這項研究中,我們設計出在體內改變能帶間隙同時響應NIR-II的硒化銅奈米粒子用於癌症治療。透過一步水熱法合成銅位點缺陷的硒化銅奈米粒子(Cu2-xSe NPs),並以牛血清蛋白(BSA)進行表面修飾以提高材料的穩定性。作為首次假設奈米材料能帶間隙在體內產生變化的研究,Cu2-xSe NPs 能消耗結腸癌細胞中過度表現的 H2S,並反應形成 CuSSe NPs。此時奈米粒子的能帶間隙改變,從而增強光熱性能。含銅的奈米粒子有利於透過不同方式重塑腫瘤微環境。二價銅離子用於消耗穀胱甘肽 (GSH) 並產生羥自由基 (·OH),透過凋亡途徑促進癌細胞死亡。本文製備的 Cu2-xSe NPs 尺寸為 56 nm,具有優異的光熱性能,可作為 H2S 消耗劑並催化 GSH 氧化,並在後續實驗中使用結腸癌細胞(CT 26)分析奈米材料在體外和皮下腫瘤模型中癌症催化治療的有效性,實現協同光熱治療以及內源性能帶間隙改變的癌症治療方案。
Colorectal cancer (CRC), a widespread malignancy affecting a significant global population presents treatment challenges with conventional approaches. Extensive research has been carried out in the past decade for colon cancer treatment and control recurrence with most of the results being up to par in few cases with very low survival predictability. Nanoparticles offer a promising avenue for CRC therapy, enabling precise cancer cell targeting drug release and remodeling cancer microenvironment, thus improving treatment effectiveness while minimizing side effects. The therapeutic modalities that have been under extensive research include solid lipid nanoparticles, nanoparticles loaded with drugs, cellular membrane coated micro/nanoparticles, and inorganic nanoparticles which overcome the poor tumor targeting and efficacy of conventional drugs. Among them inorganic nanoparticles with tumor microenvironment activable catalytic property possesses potential to be translate to clinical practice. Cancer microenvironment with its unique feature facilitates cell proliferation, migration and invasion. Therefore, remodeling cancer microenvironment can be an effective way to stop cancer growth. Controlling cell proliferation combined with toxic compounds can work together to eliminate tumors.
In this work we report in vivo band gap changing NIR-II responsive copper selenide nanoparticles for synergistic cancer therapy. Copper deficient copper selenide nanoparticles (Cu2-xSe NPs) were synthesized by one step hydrothermal process and surface modified with bovine serum albumin (BSA) for colloidal stability. Cu2-xSe NPs reacts with and deplete overexpressed H2S in colon cancer cells forming CuSSe NPs. While doing so band gap of nanoparticles is changed and subsequently the photothermal property is enhanced. Potential of endogenous change in the band gap of nanomaterials is postulated for the first time in this work. Copper containing nanoparticles is advantageous in remodeling cancer microenvironment in different ways. Bivalent copper is used to deplete the level of glutathione (GSH) and to produce hydroxyl radical (•OH) that promotes cell death via apoptosis. Cu2-xSe NPs prepared herein is 56 nm in size and possess excellent photothermal property, acts as a H2S depleting agent and catalyze GSH oxidation. It’s effectiveness in cancer catalytic therapy were analyzed using CT26 colon cancer cells in vitro and subcutaneous tumor model. Our study presents endogenously band gap changing nanoparticles for synergistic cancer therapy.
[1] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians 71(3) (2021) 209-249.
[2] E.C. Lazcano‐Ponce, J.F. Miquel, N. Muñoz, R. Herrero, C. Ferrecio, I.I. Wistuba, P.A. De Ruiz, G.A. Urista, F. Nervi, Epidemiology and molecular pathology of gallbladder cancer, CA: a cancer journal for clinicians 51(6) (2001) 349-364.
[3] F.M. Walter, J.D. Emery, S. Mendonca, N. Hall, H.C. Morris, K. Mills, C. Dobson, C. Bankhead, M. Johnson, G.A. Abel, Symptoms and patient factors associated with longer time to diagnosis for colorectal cancer: results from a prospective cohort study, British journal of cancer 115(5) (2016) 533-541.
[4] Y.-W. Wang, H.-H. Chen, M.-S. Wu, H.-M. Chiu, Current status and future challenge of population-based organized colorectal cancer screening: Lesson from the first decade of Taiwanese program, Journal of the Formosan Medical Association 117(5) (2018) 358-364.
[5] J. Engstrand, H. Nilsson, C. Strömberg, E. Jonas, J. Freedman, Colorectal cancer liver metastases–a population-based study on incidence, management and survival, BMC cancer 18(1) (2018) 1-11.
[6] M. Pancione, G. Giordano, A. Remo, A. Febbraro, L. Sabatino, E. Manfrin, M. Ceccarelli, V. Colantuoni, Immune escape mechanisms in colorectal cancer pathogenesis and liver metastasis, Journal of immunology research 2014 (2014).
[7] D. Fan, Y. Cao, M. Cao, Y. Wang, Y. Cao, T. Gong, Nanomedicine in cancer therapy, Signal Transduction and Targeted Therapy 8(1) (2023) 293.
[8] Y.-C. He, Z.-N. Hao, Z. Li, D.-W. Gao, Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer, World Journal of Gastroenterology 29(4) (2023) 670.
[9] H. Lin, Y. Yu, L. Zhu, N. Lai, L. Zhang, Y. Guo, X. Lin, D. Yang, N. Ren, Z. Zhu, Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies., 2023, 59, DOI: https://doi. org/10.1016/j. redox (2023) 102601.
[10] S. Chen, T. Yue, Z. Huang, J. Zhu, D. Bu, X. Wang, Y. Pan, Y. Liu, P. Wang, Inhibition of hydrogen sulfide synthesis reverses acquired resistance to 5-FU through miR-215-5p-EREG/TYMS axis in colon cancer cells, Cancer letters 466 (2019) 49-60.
[11] C. Szabo, C. Coletta, C. Chao, K. Módis, B. Szczesny, A. Papapetropoulos, M.R. Hellmich, Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer, Proceedings of the National Academy of Sciences 110(30) (2013) 12474-12479.
[12] A.P. Ingle, N. Duran, M. Rai, Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review, Applied microbiology and biotechnology 98 (2014) 1001-1009.
[13] C. Angelé-Martínez, K.V.T. Nguyen, F.S. Ameer, J.N. Anker, J.L. Brumaghim, Reactive oxygen species generation by copper (II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy, Nanotoxicology 11(2) (2017) 278-288.
[14] X. Yuan, Y. Kang, J. Dong, R. Li, J. Ye, Y. Fan, J. Han, J. Yu, G. Ni, X. Ji, Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy, Nature Communications 14(1) (2023) 5140.
[15] M. Kim, J.H. Lee, J.M. Nam, Plasmonic photothermal nanoparticles for biomedical applications, Advanced Science 6(17) (2019) 1900471.
[16] M. Kim, M. Lin, J. Son, H. Xu, J.M. Nam, Hot‐electron‐mediated photochemical reactions: principles, recent advances, and challenges, Advanced Optical Materials 5(15) (2017) 1700004.
[17] M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nature nanotechnology 10(1) (2015) 25-34.
[18] S.Q. Lie, D.M. Wang, M.X. Gao, C.Z. Huang, Controllable copper deficiency in Cu 2− x Se nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence, Nanoscale 6(17) (2014) 10289-10296.
[19] P.L. Saldanha, R. Brescia, M. Prato, H. Li, M. Povia, L. Manna, V. Lesnyak, Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles, Chemistry of Materials 26(3) (2014) 1442-1449.
[20] J. Douaiher, A. Ravipati, B. Grams, S. Chowdhury, O. Alatise, C. Are, Colorectal cancer—global burden, trends, and geographical variations, Journal of surgical oncology 115(5) (2017) 619-630.
[21] D. Lang, K.K. Ciombor, Diagnosis and management of rectal cancer in patients younger than 50 years: rising global incidence and unique challenges, Journal of the National Comprehensive Cancer Network 20(10) (2022) 1169-1175.
[22] L. Yang, S. Wang, J.J.-K. Lee, S. Lee, E. Lee, E. Shinbrot, D.A. Wheeler, R. Kucherlapati, P.J. Park, An enhanced genetic model of colorectal cancer progression history, Genome biology 20 (2019) 1-17.
[23] Y. Itatani, T. Yamamoto, C. Zhong, A.A. Molinolo, J. Ruppel, P. Hegde, M.M. Taketo, N. Ferrara, Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer, Proceedings of the National Academy of Sciences 117(35) (2020) 21598-21608.
[24] H.T. Lynch, A. De la Chapelle, Hereditary colorectal cancer, New England Journal of Medicine 348(10) (2003) 919-932.
[25] A. Umar, C.R. Boland, J.P. Terdiman, S. Syngal, A.d.l. Chapelle, J. Rüschoff, R. Fishel, N.M. Lindor, L.J. Burgart, R. Hamelin, Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability, Journal of the National Cancer Institute 96(4) (2004) 261-268.
[26] E.M. Stoffel, F. Kastrinos, Familial colorectal cancer, beyond Lynch syndrome, Clinical Gastroenterology and Hepatology 12(7) (2014) 1059-1068.
[27] B. Levin, D.A. Lieberman, B. McFarland, K.S. Andrews, D. Brooks, J. Bond, C. Dash, F.M. Giardiello, S. Glick, D. Johnson, Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology, Gastroenterology 134(5) (2008) 1570-1595.
[28] C.G.A. Network, Comprehensive molecular characterization of human colon and rectal cancer, Nature 487(7407) (2012) 330.
[29] M. Brocardo, B.R. Henderson, APC shuttling to the membrane, nucleus and beyond, Trends in cell biology 18(12) (2008) 587-596.
[30] M.S. Pino, D.C. Chung, The chromosomal instability pathway in colon cancer, Gastroenterology 138(6) (2010) 2059-2072.
[31] T.M. Tuohy, K.G. Rowe, G.P. Mineau, R. Pimentel, R.W. Burt, N.J. Samadder, Risk of colorectal cancer and adenomas in the families of patients with adenomas: A population‐based study in Utah, Cancer 120(1) (2014) 35-42.
[32] S.G. Patel, D.J. Ahnen, Prevention of interval colorectal cancers: what every clinician needs to know, Clinical Gastroenterology and Hepatology 12(1) (2014) 7-15.
[33] R. Erichsen, J.A. Baron, E.M. Stoffel, S. Laurberg, R.S. Sandler, H.T. Sørensen, Characteristics and survival of interval and sporadic colorectal cancer patients: a nationwide population-based cohort study, Official journal of the American College of Gastroenterology| ACG 108(8) (2013) 1332-1340.
[34] E. Koustas, E.-M. Trifylli, P. Sarantis, N. Papadopoulos, E. Karapedi, G. Aloizos, C. Damaskos, N. Garmpis, A. Garmpi, K.A. Papavassiliou, Immunotherapy as a Therapeutic Strategy for Gastrointestinal Cancer—Current Treatment Options and Future Perspectives, International Journal of Molecular Sciences 23(12) (2022) 6664.
[35] N. Ebrahimi, M. Afshinpour, S.S. Fakhr, P.G. Kalkhoran, V.S. Manesh, S. Adelian, S. Beiranvand, F. Rezaei-Tazangi, R. Khorram, M.R. Hamblin, Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance, Critical Reviews in Oncology/Hematology (2023) 103920.
[36] I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Advanced drug delivery reviews 64 (2012) 24-36.
[37] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nano-enabled medical applications (2020) 61-91.
[38] A. Ahmad, F. Khan, R.K. Mishra, R. Khan, Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting, Journal of medicinal chemistry 62(23) (2019) 10475-10496.
[39] Y. Nakamura, A. Mochida, P.L. Choyke, H. Kobayashi, Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer?, Bioconjugate chemistry 27(10) (2016) 2225-2238.
[40] H. Kang, S. Rho, W.R. Stiles, S. Hu, Y. Baek, D.W. Hwang, S. Kashiwagi, M.S. Kim, H.S. Choi, Size‐dependent EPR effect of polymeric nanoparticles on tumor targeting, Advanced healthcare materials 9(1) (2020) 1901223.
[41] D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics, Nature communications 9(1) (2018) 1410.
[42] M. Dabaghi, S.M.M. Rasa, E. Cirri, A. Ori, F. Neri, R. Quaas, I. Hilger, Iron oxide nanoparticles carrying 5-fluorouracil in combination with magnetic hyperthermia induce thrombogenic collagen fibers, cellular stress, and immune responses in heterotopic human colon cancer in mice, Pharmaceutics 13(10) (2021) 1625.
[43] H.M. Gil, T.W. Price, K. Chelani, J.-S.G. Bouillard, S.D. Calaminus, G.J. Stasiuk, NIR-quantum dots in biomedical imaging and their future, Iscience 24(3) (2021).
[44] A.K. Jain, N.K. Swarnakar, C. Godugu, R.P. Singh, S. Jain, The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen, Biomaterials 32(2) (2011) 503-515.
[45] T. Li, M. Smet, W. Dehaen, H. Xu, Selenium–platinum coordination dendrimers with controlled anti-cancer activity, ACS Applied Materials & Interfaces 8(6) (2016) 3609-3614.
[46] P.-C. Lee, Y.-C. Chiou, J.-M. Wong, C.-L. Peng, M.-J. Shieh, Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody, Biomaterials 34(34) (2013) 8756-8765.
[47] K. Maruyama, O. Ishida, S. Kasaoka, T. Takizawa, N. Utoguchi, A. Shinohara, M. Chiba, H. Kobayashi, M. Eriguchi, H. Yanagie, Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT), Journal of controlled release 98(2) (2004) 195-207.
[48] S. Ganta, M. Talekar, A. Singh, T.P. Coleman, M.M. Amiji, Nanoemulsions in translational research—opportunities and challenges in targeted cancer therapy, Aaps Pharmscitech 15 (2014) 694-708.
[49] P.B. Kasi, V.R. Mallela, F. Ambrozkiewicz, A. Trailin, V. Liška, K. Hemminki, Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances, International Journal of Molecular Sciences 24(9) (2023) 7922.
[50] L. An, X. Wang, X. Rui, J. Lin, H. Yang, Q. Tian, C. Tao, S. Yang, The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics, Angewandte Chemie International Edition 57(48) (2018) 15782-15786.
[51] X. Pan, Y. Qi, Z. Du, J. He, S. Yao, W. Lu, K. Ding, M. Zhou, Zinc oxide nanosphere for hydrogen sulfide scavenging and ferroptosis of colorectal cancer, Journal of Nanobiotechnology 19(1) (2021) 1-17.
[52] Y. Zhang, J. Fang, S. Ye, Y. Zhao, A. Wang, Q. Mao, C. Cui, Y. Feng, J. Li, S. Li, A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy, Nature communications 13(1) (2022) 1685.
[53] X. Zhong, X. Dai, Y. Wang, H. Wang, H. Qian, X. Wang, Copper‐based nanomaterials for cancer theranostics, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 14(4) (2022) e1797.
[54] X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications, Chemical Society Reviews 50(15) (2021) 8669-8742.
[55] Z. Wang, N. Yu, X. Li, W. Yu, S. Han, X. Ren, S. Yin, M. Li, Z. Chen, Galvanic exchange-induced growth of Au nanocrystals on CuS nanoplates for imaging guided photothermal ablation of tumors, Chemical Engineering Journal 381 (2020) 122613.
[56] Y. Zhuang, S. Han, Y. Fang, H. Huang, J. Wu, Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation, Coordination Chemistry Reviews 455 (2022) 214360.
[57] X. Ren, X. Huang, Q. Wu, L. Tan, C. Fu, Y. Chen, X. Meng, Nanoscale metal organic frameworks inhibition of pyruvate kinase of M2, Chinese Chemical Letters 32(10) (2021) 3087-3089.
[58] J. Ruan, H. Qian, Recent development on controlled synthesis of Mn‐based nanostructures for bioimaging and cancer therapy, Advanced Therapeutics 4(5) (2021) 2100018.
[59] T. Yang, M. Zhou, M. Gao, W. Qin, Q. Wang, H. Peng, W. Yao, L. Qiao, X. He, Carrier‐Free H2O2 Self‐Supplier for Amplified Synergistic Tumor Therapy, Small (2022) 2205692.
[60] W.F. Song, J.Y. Zeng, P. Ji, Z.Y. Han, Y.X. Sun, X.Z. Zhang, Self‐Assembled Copper‐Based Nanoparticles for Glutathione Activated and Enzymatic Cascade‐Enhanced Ferroptosis and Immunotherapy in Cancer Treatment, Small (2023) 2301148.
[61] D. Lapotko, Therapy with gold nanoparticles and lasers: what really kills the cells?, (2009).
[62] Z. Bao, X. Liu, Y. Liu, H. Liu, K. Zhao, Near-infrared light-responsive inorganic nanomaterials for photothermal therapy, asian journal of pharmaceutical sciences 11(3) (2016) 349-364.
[63] H.S. Han, K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications, Biomedicines 9(3) (2021) 305.
[64] K. Hu, L. Xie, Y. Zhang, M. Hanyu, Z. Yang, K. Nagatsu, H. Suzuki, J. Ouyang, X. Ji, J. Wei, Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy, Nature Communications 11(1) (2020) 2778.
[65] S. Zhang, C. Sun, J. Zeng, Q. Sun, G. Wang, Y. Wang, Y. Wu, S. Dou, M. Gao, Z. Li, Ambient aqueous synthesis of ultrasmall PEGylated Cu2− xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer, Advanced Materials 28(40) (2016) 8927-8936.
[66] C. Jia, Y. Guo, F.G. Wu, Chemodynamic therapy via fenton and fenton‐like nanomaterials: strategies and recent advances, Small 18(6) (2022) 2103868.
[67] C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang, H. Yao, Z. Wang, J. Shi, Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction, Angewandte Chemie International Edition 55(6) (2016) 2101-2106.
[68] X. Wang, X. Zhong, H. Lei, Y. Geng, Q. Zhao, F. Gong, Z. Yang, Z. Dong, Z. Liu, L. Cheng, Hollow Cu2Se nanozymes for tumor photothermal-catalytic therapy, Chemistry of Materials 31(16) (2019) 6174-6186.
[69] L. Mei, D. Ma, Q. Gao, X. Zhang, W. Fu, X. Dong, G. Xing, W. Yin, Z. Gu, Y. Zhao, Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy, Materials Horizons 7(7) (2020) 1834-1844.
[70] X. Wang, X. Zhong, Z. Liu, L. Cheng, Recent progress of chemodynamic therapy-induced combination cancer therapy, Nano Today 35 (2020) 100946.
[71] S. Chen, C. Li, K. Domen, F. Zhang, Particulate metal chalcogenides for photocatalytic Z-scheme overall water splitting, Joule (2023).
[72] B. Zhao, Y. Wang, X. Yao, D. Chen, M. Fan, Z. Jin, Q. He, Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst, Nature Communications 12(1) (2021) 1345.
[73] C. Huang, C. Liang, T. Sadhukhan, S. Banerjee, Z. Fan, T. Li, Z. Zhu, P. Zhang, K. Raghavachari, H. Huang, In‐vitro and in‐vivo photocatalytic cancer therapy with biocompatible iridium (III) photocatalysts, Angewandte Chemie 133(17) (2021) 9560-9565.
[74] Y. Kang, Z. Mao, Y. Wang, C. Pan, M. Ou, H. Zhang, W. Zeng, X. Ji, Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy, Nature Communications 13(1) (2022) 2425.
[75] X. Ji, Z. Tang, H. Liu, Y. Kang, L. Chen, J. Dong, W. Chen, N. Kong, W. Tao, T. Xie, Nanoheterojunction‐Mediated Thermoelectric Strategy for Cancer Surgical Adjuvant Treatment and β‐Elemene Combination Therapy, Advanced Materials 35(8) (2023) 2207391.
[76] D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites, Journal of the Chemical Society, Dalton Transactions (1) (2001) 1-12.
[77] D. Mitzi, S. Wang, C. Feild, C. Chess, A. Guloy, Conducting layered organic-inorganic halides containing〈 110〉-oriented perovskite sheets, Science 267(5203) (1995) 1473-1476.
[78] M. Vigneshwaran, T. Ohta, S. Iikubo, G. Kapil, T.S. Ripolles, Y. Ogomi, T. Ma, S.S. Pandey, Q. Shen, T. Toyoda, Facile synthesis and characterization of sulfur doped low bandgap bismuth based perovskites by soluble precursor route, Chemistry of materials 28(18) (2016) 6436-6440.
[79] W. Zhang, D. Fu, Y. Bai, C. Yuan, In-situ anion exchange synthesis of copper selenide electrode as electrocatalyst for hydrogen evolution reaction, International Journal of Hydrogen Energy 42(16) (2017) 10925-10930.
[80] H.K. Zafar, M. Sohail, A. Nafady, K.K. Ostrikov, G. Will, M.A. Wahab, A.P. O'Mullane, S-doped copper selenide thin films synthesized by chemical bath deposition for photoelectrochemical water splitting, Applied Surface Science 641 (2023) 158505.
[81] U. Anand, A. Dey, A.K.S. Chandel, R. Sanyal, A. Mishra, D.K. Pandey, V. De Falco, A. Upadhyay, R. Kandimalla, A. Chaudhary, Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics, Genes & Diseases (2022).
[82] T. He, X. Qin, C. Jiang, D. Jiang, S. Lei, J. Lin, W.-G. Zhu, J. Qu, P. Huang, Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy, Theranostics 10(6) (2020) 2453.
[83] C. Lin, C. Huang, Z. Shi, M. Ou, S. Sun, M. Yu, T. Chen, Y. Yi, X. Ji, F. Lv, Biodegradable calcium sulfide-based nanomodulators for H2S-boosted Ca2+-involved synergistic cascade cancer therapy, Acta Pharmaceutica Sinica B 12(12) (2022) 4472-4485.
[84] G. Xiao, J. Ning, Z. Liu, Y. Sui, Y. Wang, Q. Dong, W. Tian, B. Liu, G. Zou, B. Zou, Solution synthesis of copper selenide nanocrystals and their electrical transport properties, CrystEngComm 14(6) (2012) 2139-2144.
[85] Y. Li, X. Sun, Z. Cheng, X. Xu, J. Pan, X. Yang, F. Tian, Y. Li, J. Yang, Y. Qian, Mesoporous Cu2-xSe nanocrystals as an ultrahigh-rate and long-lifespan anode material for sodium-ion batteries, Energy Storage Materials 22 (2019) 275-283.
[86] H. Li, J. Jiang, J. Huang, Y. Wang, Y. Peng, Y. Zhang, B.-J. Hwang, J. Zhao, Investigation of the Na Storage Property of One-Dimensional Cu2–xSe Nanorods, ACS Applied Materials & Interfaces 10(16) (2018) 13491-13498.
[87] A. Al Alwani, P. Shipra, P. Shiv, A. Kletsov, S. Venig, Effect of the graphene sheets on the physical properties of copper sulfide nanoparticles, Int. J. Nanopart. Nanotechnol 5 (2019) 029.
[88] Y. Yao, B.-P. Zhang, J. Pei, Y.-C. Liu, J.-F. Li, Thermoelectric performance enhancement of Cu 2 S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction, Journal of Materials Chemistry C 5(31) (2017) 7845-7852.
[89] Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou, Y. Shi, S. Fang, H.M. Cheng, F. Li, CuS microspheres with tunable interlayer space and micropore as a high‐rate and long‐life anode for sodium‐ion batteries, Advanced Energy Materials 8(22) (2018) 1800930.
[90] S. Dhasade, J. Thombare, R. Gaikwad, S. Gaikwad, S. Kumbhare, S. Patil, Copper selenide nanorods grown at room temperature by electrodeposition, Materials Science in Semiconductor Processing 30 (2015) 48-55.
[91] N.A. Modine, A. Armstrong, M.H. Crawford, W.W. Chow, Highly nonlinear defect-induced carrier recombination rates in semiconductors, Journal of Applied Physics 114(14) (2013).
[92] T. Yang, M. Zhou, M. Gao, W. Qin, Q. Wang, H. Peng, W. Yao, L. Qiao, X. He, Carrier‐Free H2O2 Self‐Supplier for Amplified Synergistic Tumor Therapy, Small 19(7) (2023) 2205692.
[93] P. Jawaid, M.U. Rehman, Q.-L. Zhao, M. Misawa, K. Ishikawa, M. Hori, T. Shimizu, J.-i. Saitoh, K. Noguchi, T. Kondo, Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress, Cell death discovery 6(1) (2020) 83.
[94] Y. Sun, Y. Zheng, C. Wang, Y. Liu, Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells, Cell death & disease 9(7) (2018) 753.
[95] Z. Deng, M. Jiang, Y. Li, H. Liu, S. Zeng, J. Hao, Endogenous H2S-triggered in situ synthesis of NIR-II-emitting nanoprobe for in vivo intelligently lighting up colorectal cancer, Iscience 17 (2019) 217-224.
[96] A. Xiao, H. Wang, X. Lu, J. Zhu, D. Huang, T. Xu, J. Guo, C. Liu, J. Li, H2S, a novel gasotransmitter, involves in gastric accommodation, Scientific reports 5(1) (2015) 1-9.
[97] C. Szabo, Gasotransmitters in cancer: from pathophysiology to experimental therapy, Nature reviews Drug discovery 15(3) (2016) 185-203.
[98] W. Li, J. Yang, L. Luo, M. Jiang, B. Qin, H. Yin, C. Zhu, X. Yuan, J. Zhang, Z. Luo, Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death, Nature communications 10(1) (2019) 3349.