簡易檢索 / 詳目顯示

研究生: 張慧英
Indah Permata Sari
論文名稱: 建構Lambda red-CRISPR Cas9的桿狀病毒基因編輯系統-探討宿主決定因子及生產AAV顆粒之研究
Baculovirus Genome Editing Utilizing Lambda Red-Coupled CRISPR-Cas9 System – Host Range Extension Factor Determination and AAV Particle Production
指導教授: 彭明德
Perng, Ming-Der
吳宗遠
Wu, Tzong-Yuan
口試委員: 滕昭怡
Teng, Chao-Yi
陳怡寧
Chen, Yi-Ning
郭冠群
Kuo, Kwang-Chun
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 124
中文關鍵詞: 桿狀病毒宿主決定因子基因編輯平台
外文關鍵詞: host range determinant factor, CRISPR-Cas9, lambda red recombineering
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    桿狀病毒是一種主要感染昆蟲的雙股DNA病毒,廣泛應用於生物技術領域,例如外源蛋白質表現、基因傳遞及生物農藥。透過改造桿狀病毒基因體的方式能增加蛋白質表現、探討病毒基因的功能、以及增加病毒擴展宿主域的能力。本研究使用CRISPR-Cas9結合lambda red基因重組系統 (CCR9-lamda red),能在無標記情況下,單一步驟就能精準的針對桿狀病毒基因體進行編輯。
    我們利用CCR9-lamda red成功的在加州苜蓿葉蛾核多角體病毒(AcMNMPV) bacmid 中,剔除非必要基因p10 及 chiA/cath,驗證此基因編輯系統之可行性。在此p10 及 chiA/cath剔除的桿狀病毒基因體中,我們嘗試表現分泌型鹼性磷酸酶(SEAP),發現SEAP在胞外的活性,以及在胞內的mRNA都有顯著增加,顯示此改造之病毒載體能有效增加分泌型蛋白的表現。此外,我們也利用CRISPR-Cas9結合的基因編輯系統,成功地將EGFP基因鑲嵌到病毒基因體中p10 及 chiA/cath的位點,驗證了此系統應用的多元性。
    此外,我們也以CCR9-lamda red方法應用在探討桿狀病毒宿主決定因子。由加州苜蓿夜蛾核多角體病毒(AcMNPV)、家蠶核多角體病毒(BmNPV)以及豆莢螟核多角體(MaviMNPV)之基因體組成之桿狀病毒ABM病毒,能感染Sf21、BmN以及Mv532細胞株。在ABM基因體分析中,發現helicase以及一段從MaviMNPV基因體中來的pe38-lef2片段,為可能的宿主決定因子。研究中,我們將AcMNPV中的helicase 置換成ABM的helicase,此重組病毒能在BmN細胞中複製,確認了helicase為感染BmN細胞的決定因子。此外,進一步將pe38-lef2片段置換到AcMNPV中,重組病毒也能感染Mv532細胞,但若僅置換其中單一基因或是部分片段仍無法成功建立感染,顯示此片段中開放閱讀區的基因,對於跨越宿主域扮演協同角色。
    最後,我們也利用基因編輯平台將AAV的基因鑲嵌入AcMNPV桿狀病毒不同的位點用以生產AAV病毒顆粒。透過生產出來的AAV,在感染HEK293細胞後能否成功表達EGFP蛋白作為驗證,我們發現無論是將AAV基因放在同一位點或是兩個位點,皆能成功的生產具功能性的AAV顆粒。
    本研究驗證了CRISPR-Cas9-lambda red基因編輯系統,能作為另一個可以精準修改桿狀病毒基因體,來達到優化重組蛋白表現以及探討宿主決定因子的新穎技術。

    關鍵字: 桿狀病毒、宿主決定因子、基因編輯平台


    Abstract

    Baculoviruses, insect-infecting double-stranded DNA viruses, have gained significant utility in biotechnology for protein expression, gene delivery, and agricultural biocontrol. Advances in genetic engineering have improved protein yields, provided insights into viral functions, and extended host range capabilities. This study highlights the application of the CRISPR-Cas9-coupled lambda red recombineering system for precise and efficient baculovirus genome editing, achieving single-step marker-less modifications.
    As a proof of concept, we targeted non-essential genes (p10 and chiA/cath loci) in the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. The modified baculoviruses demonstrated elevated expression of functional secreted alkaline phosphatase (SEAP) expression and mRNA levels, validating the system’s efficiency for recombinant protein production. A knock-in of the egfp gene into these loci highlighted the versatility of CRISPR-Cas9-coupled system for introducing exogenous genes.
    Further, we investigated host range determinants of the hybrid ABM baculovirus, derived from recombination of AcMNPV, Bombyx mori nucleopolyhedrovirus (BmNPV), and Maruca vitrata nucleopolyhedrovirus (MaviNPV). ABM’s infectivity extended to Sf21, BmN, and Mv532 cells. Genome analysis identified key open reading frames (ORFs) influencing host range, such as helicase and the flanking pe38-lef2 region. Replacing AcMNPV helicase with ABM helicase enabled replication in BmN cells, while Mv532 infectivity required the entire pe38-lef2 region. Neither individual nor partial combinations of ORFs extended the host range to Mv532 cells, suggesting the necessity of synergistic interactions among these ORFs.
    Lastly, we integrated the adeno-associated virus’s (AAV) genes into an alternative locus of AcMNPV to produced functional AAV particles using the CRISPR-Cas9-coupled lambda red recombineering approach. A streamlined 1-locus and flexible 2-loci constructs facilitated efficient AAV particle production, validated by EGFP expression in HEK293 cells.
    This study demonstrated the CRISPR-Cas9-coupled lambda red recombineering system as an alternative tool for precise baculovirus genome engineering, enhancing recombinant protein production and enabling investigations into host range determinants.

    Keywords: Baculovirus, host range determinant factor, CRISPR-Cas9, lambda red recombineering, AAV

    Acknowledgment......................................................I Abstract..........................................................III Content............................................................IV Chapter 1 – Literature Review......................................2 A. Baculovirus Overview.............................................2 B. Baculovirus Infection Cycle......................................3 C. Baculovirus Classification.......................................4 D. Development of BEVS..............................................5 E. Lambda Red Recombineering........................................7 F. Clustered Regularly Interspaced Short Palindromic Repeats – CRISPR-Associated protein (CRISPR-Cas) Gene Editing.................9 G. Adeno-Associated Virus (AAV)....................................11 Chapter 2 – Baculovirus Genome Editing Utilizing CRISPR-Cas9-Coupled Lambda Red System..................................................14 Abstract...........................................................14 A. Introduction....................................................15 B. Experiment Rationale............................................18 C. Material and Method.............................................19 1. Cell lines......................................................19 2. Construction of sgRNA-expressing vector.........................19 3. Amplification and preparation of repair template................21 4. Construction of EGFP-fused secreted alkaline phosphatase protein (SEFP) transfer vector.............................................21 5. Preparation of electrocompetent cells...........................22 6. Generation of recombinant baculovirus through CRISPR-Cas9-coupled lambda red recombineering system...................................22 7. Determination of SEAP activity..................................23 8. Determination of relative mRNA levels...........................24 9. Determination of cell viability.................................24 D. Results and Discussion..........................................24 1. Generation of recombinant baculovirus bacmid with p10 locus deletion, chiA/cath loci deletion, and p10/chiA/cath loci simultaneous double deletion....................................................24 2. Comparison of SEAP activity of recombinant baculovirus with deleted p10 and chiA/cath loci.............................................27 3. Integration of the egfp gene into the p10 locus or chiA/cath loci mediated by the CRISPR-Cas9-coupled lambda red recombineering system.............................................................29 E. Conclusion......................................................29 Chapter 3 – Determination of Hybrid ABM Baculovirus’ Host Range Extension Factor...................................................40 Abstract...........................................................40 A. Introduction....................................................41 B. Experiment Rationale............................................43 C. Materials and Methods...........................................46 1. Cell Line.......................................................46 2. Construction of sgRNA-expressing vector.........................46 3. Construction of repair template.................................47 4. Generation of recombinant Ac-4e bacmid facilitated by the CRISPR-Cas9-coupled lambda red recombineering system......................48 5. Plasmid Curing..................................................48 6. Generation of recombinant baculovirus bacmid expressing secreted alkaline phosphatase (SEAP)........................................48 7. Generation of recombinant baculoviruses.........................49 8. Determination of SEAP activity..................................49 D. Results and Discussion..........................................50 1. The expression of ABM-derived helicase in the AcMNPV extended its host range to include BmN cells....................................50 2. Integration of the whole segment of ABM-derived pe38-lef2 loci into the homologous region of the AcMNPV genome extended the host range to Mv532 cells........................................................52 3. Integration of individual ABM-derived ORF from the ABM-pe38-lef2 loci into the homologous region of the AcMNPV genome failed to extend the host range to Mv532 cells......................................55 4. Integration of ABM-pe38 in combination with either ABM-hr1, ABM-ptp, and ABM-lef2 failed to extend the host range of AcMNPV to Mv532 cells..............................................................58 5. Comparison of the replication curve of Ac-4e, ABM-4e, Ac-4e-ABM-helicase, and Ac-4e-ABM-pe38-lef2-helicase.........................59 6. Comparison of protein expression levels in Ac-4e-, ABM-4e-, Ac-4e-ABM-helicase-, and Ac-4e-ABM-pe38-lef2-helicase-infected insect cells. ...................................................................60 E. Conclusion......................................................62 Chapter 4 – Integration of AAV Genes into an Alternative Locus of Baculovirus Genome Using CRISPR-Cas9-Coupled Lambda Red Recombineering System.............................................................90 Abstract...........................................................90 A. Introduction....................................................91 B. Experiment Rationale............................................92 C. Materials and Methods...........................................94 1. Cell line.......................................................94 2. Plasmid construction............................................94 3. Generation of AcMNPV bacmid carrying AAV cap, rep, and egfp facilitated by CRISPR-Cas9-coupled lambda red recombineering.......95 4. Generation of recombinant baculovirus...........................96 5. Determination of recombinant AAV protein expression.............96 6. Production of AAV particle and infection of HEK293 cells........97 D. Results and Discussion..........................................97 E. Conclusion......................................................99 Chapter 5 – Conclusion and Future Study..........................108 A. Conclusion.....................................................108 B. Future Study...................................................109

    Ackermann, H.-W., & Smirnoff, W. (1983). A morphological investigation of 23 baculoviruses. Journal of invertebrate pathology, 41(3), 269-280.
    Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., . . . Mori, H. (2006). Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular systems biology, 2(1), 2006.0008.
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., . . . Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.
    Bhaya, D., Davison, M., & Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics, 45(1), 273-297.
    Bideshi, D. K., Renault, S., Stasiak, K., Federici, B. A., & Bigot, Y. (2003). Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. Journal of General Virology, 84(9), 2531-2544.
    Birnboim, H., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 7(6), 1513-1523.
    Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561.
    Boyce, F. M., & Bucher, N. (1996). Baculovirus-mediated gene transfer into mammalian cells. Proceedings of the National Academy of Sciences, 93(6), 2348-2352.
    Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., . . . Van Der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960-964.
    Caldwell, B. J., & Bell, C. E. (2019). Structure and mechanism of the Red recombination system of bacteriophage λ. Progress in biophysics and molecular biology, 147, 33-46.
    Carte, J., Wang, R., Li, H., Terns, R. M., & Terns, M. P. (2008). Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & development, 22(24), 3489-3496.
    Chaabihi, H., Ogliastro, M. H., Martin, M., Giraud, C., Devauchelle, G., & Cerutti, M. (1993). Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells. Journal of virology, 67(5), 2664-2671.
    Cochran, M. A., & Faulkner, P. (1983). Location of homologous DNA sequences interspersed at five regions in the baculovirus AcMNPV genome. Journal of virology, 45(3), 961-970.
    Collaco, R. F., Cao, X., & Trempe, J. P. (1999). A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene, 238(2), 397-405.
    Court, D. L., Sawitzke, J. A., & Thomason, L. C. (2002). Genetic engineering using homologous recombination. Annual review of genetics, 36(1), 361-388.
    Croizier, G., Croizier, L., Argaud, O., & Poudevigne, D. (1994). Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proceedings of the National Academy of Sciences, 91(1), 48-52.
    Crossrates, M. (2019). AveXis receives FDA approval for Zolgensma®, the first and only gene therapy for pediatric patients with spinal muscular atrophy (SMA).
    Darrow, J. J. (2019). Luxturna: FDA documents reveal the value of a costly gene therapy. Drug discovery today, 24(4), 949-954.
    de Jong, L. A., van Oosten, L., & Pijlman, G. P. (2024). Scarless Baculovirus Genome Editing Using Lambda-Red Recombineering in E. coli. In Baculovirus: Methods and Protocols (pp. 109-126): Springer.
    Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., . . . Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602-607.
    Drouin, L. M., & Agbandje-McKenna, M. (2013). Adeno-associated virus structural biology as a tool in vector development. Future virology, 8(12), 1183-1199.
    Eldridge, R., Li, Y., & Miller, L. (1992). Characterization of a baculovirus gene encoding a small conotoxinlike polypeptide. Journal of virology, 66(11), 6563-6571.
    Fan, X., Thirunavukkarasu, K., & Weaver, R. F. (1996). Temperature-sensitive mutations in the protein kinase-1 (pk-1) gene of theAutographa californicanuclear polyhedrosis virus that block very late gene expression. Virology, 224(1), 1-9.
    Federici, B. A. (1997). Baculovirus pathogenesis. In The baculoviruses (pp. 33-59): Springer.
    Felberbaum, R. S. (2015). The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnology Journal, 10(5), 702-714.
    Galibert, L., Jacob, A., Savy, A., Dickx, Y., Bonnin, D., Lecomte, C., . . . Le Bec, C. (2021). Monobac System–A Single Baculovirus for the Production of rAAV. Microorganisms, 9(9), 1799.
    Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109(39), E2579-E2586.
    Gebhardt, M. M., Eberle, K. E., Radtke, P., & Jehle, J. A. (2014). Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38. Proceedings of the National Academy of Sciences, 111(44), 15711-15716.
    Gross, C. H., & Shuman, S. (1998). Characterization of a baculovirus-encoded RNA 5′-triphosphatase. Journal of virology, 72(9), 7057-7063.
    Guarino, L. A., Gonzalez, M. A., & Summers, M. D. (1986). Complete sequence and enhancer function of the homologous DNA regions of Autographa californica nuclear polyhedrosis virus. Journal of virology, 60(1), 224-229.
    Guarino, L. A., Jin, J., & Dong, W. (1998). Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. Journal of virology, 72(12), 10003-10010.
    Guarino, L. A., Xu, B., Jin, J., & Dong, W. (1998). A virus-encoded RNA polymerase purified from baculovirus-infected cells. Journal of virology, 72(10), 7985-7991.
    Gwak, W. S., Lee, S. N., Choi, J. B., Kim, H. S., Han, B. K., Bae, S. M., . . . Woo, S. D. (2019). Baculovirus entire ORF1629 is not essential for viral replication. PloS one, 14(8), e0221594.
    Hamajima, R., Kobayashi, M., & Ikeda, M. (2015). Identification of amino acid residues of AcMNPV P143 protein involved in rRNA degradation and restricted viral replication in BM-N cells from the silkworm Bombyx mori. Virology, 485, 244-251.
    Hamajima, R., Kobayashi, M., & Ikeda, M. (2017). P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori. Virus research, 233, 70-76.
    Harrison, R. L., Herniou, E. A., Jehle, J. A., Theilmann, D. A., Burand, J. P., Becnel, J. J., . . . Bauchan, G. R. (2018). ICTV virus taxonomy profile: Baculoviridae. Journal of General Virology, 99(9), 1185-1186.
    Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K., & Doudna, J. A. (2010). Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 329(5997), 1355-1358.
    Hawtin, R. E., Zarkowska, T., Arnold, K., Thomas, C. J., Gooday, G. W., King, L. A., . . . Possee, R. D. (1997). Liquefaction ofAutographa californicaNucleopolyhedrovirus-Infected Insects Is Dependent on the Integrity of Virus-Encoded Chitinase and Cathepsin Genes. Virology, 238(2), 243-253.
    Hellen, C. U., & Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & development, 15(13), 1593-1612.
    Hermonat, P. L., & Muzyczka, N. (1984). Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proceedings of the National Academy of Sciences, 81(20), 6466-6470.
    Hitchman, R. B., Possee, R. D., Crombie, A. T., Chambers, A., Ho, K., Siaterli, E., . . . Loomis, K. (2010). Genetic modification of a baculovirus vector for increased expression in insect cells. Cell biology and toxicology, 26, 57-68.
    Hitchman, R. B., Possee, R. D., Siaterli, E., Richards, K. S., Clayton, A. J., Bird, L. E., . . . Danquah, J. O. (2010). Improved expression of secreted and membrane‐targeted proteins in insect cells. Biotechnology and applied biochemistry, 56(3), 85-93.
    Hong, M., Li, T., Xue, W., Zhang, S., Cui, L., Wang, H., . . . Xia, N. (2022). Genetic engineering of baculovirus-insect cell system to improve protein production. Frontiers in Bioengineering and Biotechnology, 10, 994743.
    Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429-5433.
    Jansen, R., Embden, J. D. v., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.
    Jehle, J. A., Blissard, G., Bonning, B., Cory, J., Herniou, E., Rohrmann, G., . . . Vlak, J. (2006). On the classification and nomenclature of baculoviruses: a proposal for revision. Archives of virology, 151, 1257-1266.
    Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). CRISPR-assisted editing of bacterial genomes. Nature biotechnology, 31(3), 233.
    Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and environmental microbiology, 81(7), 2506-2514.
    Jin, J., Dong, W., & Guarino, L. A. (1998). The LEF-4 subunit of baculovirus RNA polymerase has RNA 5′-triphosphatase and ATPase activities. Journal of virology, 72(12), 10011-10019.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
    Joazeiro, C. A., & Weissman, A. M. (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell, 102(5), 549-552.
    Kaba, S. A., Salcedo, A. M., Wafula, P. O., Vlak, J. M., & van Oers, M. M. (2004). Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. Journal of virological methods, 122(1), 113-118.
    Kamita, S., & Maeda, S. (1993). Inhibition of Bombyx mori nuclear polyhedrosis virus (NPV) replication by the putative DNA helicase gene of Autographa californica NPV. Journal of virology, 67(10), 6239-6245.
    Kamita, S. G., & Maeda, S. (1997). Sequencing of the putative DNA helicase-encoding gene of the Bombyx mori nuclear polyhedrosis virus and fine-mapping of a region involved in host range expansion. Gene, 190(1), 173-179.
    Katou, Y., Ikeda, M., & Kobayashi, M. (2006). Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: defective nuclear transport of the virions. Virology, 347(2), 455-465.
    Katsuma, S., & Shimada, T. (2009). Bombyx mori nucleopolyhedrovirus ORF34 is required for efficient transcription of late and very late genes. Virology, 392(2), 230-237.
    Kitts, P. A., Ayres, M. D., & Possee, R. D. (1990). Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic acids research, 18(19), 5667-5672.
    Kitts, P. A., & Possee, R. (1993). A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques, 14(5), 810-817.
    Kool, M., Ahrens, C. H., Goldbach, R. W., Rohrmann, G. F., & Vlak, J. M. (1994). Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proceedings of the National Academy of Sciences, 91(23), 11212-11216.
    Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature biotechnology, 23(5), 567-575.
    Krappa, R., & Knebel-Mörsdorf, D. (1991). Identification of the very early transcribed baculovirus gene PE-38. Journal of virology, 65(2), 805-812.
    Landais, I., Vincent, R., Bouton, M., Devauchelle, G., Duonor-Cerutti, M., & Ogliastro, M. (2006). Functional analysis of evolutionary conserved clustering of bZIP binding sites in the baculovirus homologous regions (hrs) suggests a cooperativity between host and viral transcription factors. Virology, 344(2), 421-431.
    Lee, D.-F., Chen, C.-C., Hsu, T.-A., & Juang, J.-L. (2000). A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. Journal of virology, 74(24), 11873-11880.
    Lenart, K., Arcoverde Cerveira, R., Hellgren, F., Ols, S., Sheward, D. J., Kim, C., . . . Germosen, D. (2024). Three immunizations with Novavax’s protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. npj Vaccines, 9(1), 17.
    Li, A., Zhao, H., Lai, Q., Huang, Z., Yuan, M., & Yang, K. (2015). Posttranslational modifications of baculovirus protamine-like protein P6. 9 and the significance of its hyperphosphorylation for viral very late gene hyperexpression. Journal of virology, 89(15), 7646-7659.
    Li, J., Kong, D., Ke, Y., Zeng, W., & Miki, D. (2024). Application of multiple sgRNAs boosts efficiency of CRISPR/Cas9-mediated gene targeting in Arabidopsis. BMC biology, 22(1), 6.
    Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Tang, Y.-j., . . . Zhao, X. (2015). Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metabolic engineering, 31, 13-21.
    Liao, C., & Beisel, C. L. (2021). The tracrRNA in CRISPR biology and technologies. Annual review of genetics, 55(1), 161-181.
    Lim, S. R., Lee, H. J., Kim, H. J., & Lee, S. J. (2023). Multiplex single-nucleotide microbial genome editing achieved by CRISPR-Cas9 using 5′-end-truncated sgRNAs. ACS synthetic biology, 12(7), 2203-2207.
    Lo, H.-R., Chou, C.-C., Wu, T.-Y., Yuen, J. P.-Y., & Chao, Y.-C. (2002). Novel baculovirus DNA elements strongly stimulate activities of exogenous and endogenous promoters. Journal of Biological Chemistry, 277(7), 5256-5264.
    Lu, A., & Carstens, E. B. (1993). Immediate-early baculovirus genes transactivate the p143 gene promoter of Autographa californica nuclear polyhedrosis virus. Virology, 195(2), 710-718.
    Lu, A., & Miller, L. K. (1994). Identification of three late expression factor genes within the 33.8-to 43.4-map-unit region of Autographa californica nuclear polyhedrosis virus. Journal of virology, 68(10), 6710-6718.
    Luckow, V. A., Lee, S., Barry, G., & Olins, P. (1993). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. Journal of virology, 67(8), 4566-4579.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., . . . Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826.
    Mandel, M., & Higa, A. (1970). Calcium-dependent bacteriophage DNA infection. Journal of molecular biology, 53(1), 159-162.
    McDougal, V. V., & Guarino, L. A. (2000). The Autographa californica nuclear polyhedrosis virus p143 gene encodes a DNA helicase. Journal of virology, 74(11), 5273-5279.
    McLachlin, J. R., & Miller, L. K. (1994). Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. Journal of virology, 68(12), 7746-7756.
    Mehrabadi, M., Hussain, M., Matindoost, L., & Asgari, S. (2015). The baculovirus antiapoptotic p35 protein functions as an inhibitor of the host RNA interference antiviral response. Journal of virology, 89(16), 8182-8192.
    Merten, O.-W. (2016). AAV vector production: state of the art developments and remaining challenges. Cell Gene Ther Insights, 2(5), 521-551.
    Mietzsch, M., Casteleyn, V., Weger, S., Zolotukhin, S., & Heilbronn, R. (2015). OneBac 2.0: Sf 9 cell lines for production of AAV5 vectors with enhanced infectivity and minimal encapsidation of foreign DNA. Human gene therapy, 26(10), 688-697.
    Mikhailov, V. S., & Rohrmann, G. F. (2002). Baculovirus replication factor LEF-1 is a DNA primase. Journal of virology, 76(5), 2287-2297.
    Milks, M. L., Washburn, J. O., Willis, L. G., Volkman, L. E., & Theilmann, D. A. (2003). Deletion of pe38 attenuates AcMNPV genome replication, budded virus production, and virulence in Heliothis virescens. Virology, 310(2), 224-234.
    Mishra, G., Chadha, P., Chaudhury, I., & Das, R. H. (2008). Inhibition of Autographa californica nucleopolyhedrovirus (AcNPV) polyhedrin gene expression by DNAzyme knockout of its serine/threonine kinase (pk1) gene. Virus research, 135(1), 197-201.
    Mishra, G., Chadha, P., & Das, R. H. (2008). Serine/threonine kinase (pk-1) is a component of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) very late gene transcription complex and it phosphorylates a 102 kDa polypeptide of the complex. Virus research, 137(1), 147-149.
    Murphy, K. C. (1991). Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. Journal of bacteriology, 173(18), 5808-5821.
    Naik, N. G., Lo, Y.-W., Wu, T.-Y., Lin, C.-C., Kuo, S.-C., & Chao, Y.-C. (2018). Baculovirus as an efficient vector for gene delivery into mosquitoes. Scientific Reports, 8(1), 17778.
    Nikolaev, Y., & Pervushin, K. (2009). Rethinking Leucine Zipper–a ubiquitous signal transduction motif. Nature Precedings, 1-1.
    Olson, V. A., Wetter, J. A., & Friesen, P. D. (2003). The highly conserved basic domain I of baculovirus IE1 is required for hr enhancer DNA binding and hr-dependent transactivation. Journal of virology, 77(10), 5668-5677.
    Ono, C., Kamagata, T., Taka, H., Sahara, K., Asano, S.-i., & Bando, H. (2012). Phenotypic grouping of 141 BmNPVs lacking viral gene sequences. Virus research, 165(2), 197-206.
    Pallesen, J., Wang, N., Corbett, K. S., Wrapp, D., Kirchdoerfer, R. N., Turner, H. L., . . . Shi, W. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences, 114(35), E7348-E7357.
    Passarelli, A., & Miller, L. (1993). Three baculovirus genes involved in late and very late gene expression: ie-1, ie-n, and lef-2. Journal of virology, 67(4), 2149-2158.
    Passarelli, A. L., Todd, J. W., & Miller, L. K. (1994). A baculovirus gene involved in late gene expression predicts a large polypeptide with a conserved motif of RNA polymerases. Journal of virology, 68(7), 4673-4678.
    Pazmiño‐Ibarra, V., Mengual‐Martí, A., Targovnik, A. M., & Herrero, S. (2019). Improvement of baculovirus as protein expression vector and as biopesticide by CRISPR/Cas9 editing. Biotechnology and bioengineering, 116(11), 2823-2833.
    Pearson, M., Bjornson, R., Pearson, G., & Rohrmann, G. (1992). The Autographa californica baculovirus genome: evidence for multiple replication origins. Science, 257(5075), 1382-1384.
    Pennock, G. D., Shoemaker, C., & Miller, L. K. (1984). Strong and regulated expression of Escherichia coli β-galactosidase in insect cells with a baculovirus vector. Molecular and cellular biology, 4(3), 399-406.
    Pijlman, G. P., Grose, C., Hick, T. A., Breukink, H. E., van den Braak, R., Abbo, S. R., . . . Esposito, D. (2020). Relocation of the attTn7 transgene insertion site in bacmid DNA enhances baculovirus genome stability and recombinant protein expression in insect cells. Viruses, 12(12), 1448.
    Pijlman, G. P., van Schijndel, J. E., & Vlak, J. M. (2003). Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. Journal of General Virology, 84(10), 2669-2678.
    Prikhod’ko, E. A., & Miller, L. K. (1999). The baculovirus PE38 protein augments apoptosis induced by transactivator IE1. Journal of virology, 73(8), 6691-6699.
    Pyne, M. E., Moo-Young, M., Chung, D. A., & Chou, C. P. (2015). Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and environmental microbiology, 81(15), 5103-5114.
    Rodríguez-Hernández, A. P., Martínez-Flores, D., Cruz-Reséndiz, A., Padilla-Flores, T., González-Flores, R., Estrada, K., . . . Vaca, L. (2023). Baculovirus display of peptides and proteins for medical applications. Viruses, 15(2), 411.
    Rohrmann, G. F. (2019). Baculovirus molecular biology.
    Sehara, Y., Fujimoto, K.-i., Ikeguchi, K., Katakai, Y., Ono, F., Takino, N., . . . Muramatsu, S.-i. (2017). Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson's disease. Human gene therapy Clinical development, 28(2), 74-79.
    Sheng, Z., & Charbonneau, H. (1993). The baculovirus Autographa californica encodes a protein tyrosine phosphatase. Journal of Biological Chemistry, 268(7), 4728-4733.
    Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27(1), 135-145.
    Smagghe, F., Spooner-Hart, R., Chen, Z.-H., & Donovan-Mak, M. (2023). Biological control of arthropod pests in protected cropping by employing entomopathogens: Efficiency, production and safety. Biological Control, 105337.
    Smith, G. E., Fraser, M., & Summers, M. D. (1983). Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: deletion mutations within the polyhedrin gene. Journal of virology, 46(2), 584-593.
    Smith, G. E., Summers, M. D., & Fraser, M. (1983). Production of human beta interferon in insect cells infected with a baculovirus expression vector. Molecular and cellular biology, 3(12), 2156-2165.
    Smith, R. H., Levy, J. R., & Kotin, R. M. (2009). A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Molecular Therapy, 17(11), 1888-1896.
    Sriram, S., & Gopinathan, K. P. (1998). The Potential Role of a Late Gene Expression Factor, Lef2, fromBombyx moriNuclear Polyhedrosis Virus in Very Late Gene Transcription and DNA Replication. Virology, 251(1), 108-122.
    Tachibana, A., Hamajima, R., Tomizaki, M., Kondo, T., Nanba, Y., Kobayashi, M., . . . Ikeda, M. (2017). HCF-1 encoded by baculovirus AcMNPV is required for productive nucleopolyhedrovirus infection of non-permissive Tn368 cells. Scientific Reports, 7(1), 3807.
    Takagi, T., Taylor, G. S., Kusakabe, T., Charbonneau, H., & Buratowski, S. (1998). A protein tyrosine phosphatase-like protein from baculovirus has RNA 5′-triphosphatase and diphosphatase activities. Proceedings of the National Academy of Sciences, 95(17), 9808-9812.
    Teng, C.-Y., Chang, S.-L., van Oers, M. M., & Wu, T.-Y. (2013). Enhanced protein secretion from insect cells by co-expression of the chaperone calreticulin and translation initiation factor eIF4E. Molecular biotechnology, 54, 68-78.
    Teng, C.-Y., & Wu, T.-Y. (2007). Secretory fluorescent protein, a secretion green fluorescent fusion protein with alkaline phosphatase activity as a sensitive and traceable reporter in baculovirus expression system. Biotechnology letters, 29(7), 1019-1024.
    Thiem, S. M., Du, X., Quentin, M. E., & Berner, M. M. (1996). Identification of baculovirus gene that promotes Autographa californica nuclear polyhedrosis virus replication in a nonpermissive insect cell line. Journal of virology, 70(4), 2221-2229.
    Tong, Y., Jørgensen, T. S., Whitford, C. M., Weber, T., & Lee, S. Y. (2021). A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature communications, 12(1), 5206.
    Tratschin, J.-D., West, M. H., Sandbank, T., & Carter, B. J. (1984). A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Molecular and cellular biology.
    Urabe, M., Ding, C., & Kotin, R. M. (2002). Insect cells as a factory to produce adeno-associated virus type 2 vectors. Human gene therapy, 13(16), 1935-1943.
    Vail, P., Sutter, G., Jay, D., & Gough, D. (1971). Reciprocal infectivity of nuclear polyhedrosis viruses of the cabbage looper and alfalfa looper. Journal of invertebrate pathology, 17(3), 383-388.
    Van Oers, M., Van der Veken, L., Vlak, J., & Thomas, A. (2001). Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E. Insect Molecular Biology, 10(3), 255-264.
    Van Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology. Journal of General Virology, 96(1), 6-23.
    van Oers, M. M., & Vlak, J. M. (2007). Baculovirus genomics. Current Drug Targets, 8(10), 1051-1068.
    Vialard, J., & Richardson, C. (1993). The 1,629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes a nucleocapsid-associated phosphoprotein. Journal of virology, 67(10), 5859-5866.
    Vlak, J. M., Klinkenberg, A. F., Zaal, K. J., Usmany, M., Klinge-Roode, E. C., Geervliet, J. B., . . . Van Lent, J. W. (1988). Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-β-galactosidase fusion gene. Journal of General Virology, 69(4), 765-776.
    Wang, Q., Bosch, B.-J., Vlak, J. M., van Oers, M. M., Rottier, P. J., & van Lent, J. W. (2016). Budded baculovirus particle structure revisited. Journal of invertebrate pathology, 134, 15-22.
    Wang, X.-S., Ponnazhagan, S., & Srivastava, A. (1996). Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions. Journal of virology, 70(3), 1668-1677.
    Wang, Y., Wang, S., Chen, W., Song, L., Zhang, Y., Shen, Z., . . . Ji, Q. (2018). CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Applied and environmental microbiology, 84(23), e01834-01818.
    Wilson, T. E., Topper, L. M., & Palmbos, P. L. (2003). Non-homologous end-joining: bacteria join the chromosome breakdance. Trends in biochemical sciences, 28(2), 62-66.
    Woo, S.-D., Roh, J.-Y., Choi, J.-Y., & Jin, B.-R. (2007). Propagation of Bombyx mori Nucleopolyhedrovirus in nonpermissive insect cell lines. Journal of Microbiology, 45(2), 133-138.
    Wu, C. P., Huang, Y.-J., Wang, J.-Y., Wu, Y.-L., Lo, H.-R., Wang, J.-C., & Chao, Y.-C. (2010). Autographa californica multiple nucleopolyhedrovirus LEF-2 is a capsid protein required for amplification but not initiation of viral DNA replication. Journal of virology, 84(10), 5015-5024.
    Xiao, X., Li, J., & Samulski, R. J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. Journal of virology, 72(3), 2224-2232.
    Yang, S., & Miller, L. K. (1998). Expression and mutational analysis of the baculovirus very late factor 1 (vlf-1) gene. Virology, 245(1), 99-109.
    Yang, S., & Miller, L. K. (1999). Activation of baculovirus very late promoters by interaction with very late factor 1. Journal of virology, 73(4), 3404-3409.
    Yu, D., Ellis, H. M., Lee, E.-C., Jenkins, N. A., Copeland, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences, 97(11), 5978-5983.
    Yu, D., Sawitzke, J. A., Ellis, H., & Court, D. L. (2003). Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proceedings of the National Academy of Sciences, 100(12), 7207-7212.
    Zhou, J., Wang, J., Shen, B., Chen, L., Su, Y., Yang, J., . . . Huang, X. (2014). Dual sgRNAs facilitate CRISPR/Cas9‐mediated mouse genome targeting. In (Vol. 281, pp. 1717-1725): Wiley Online Library.

    QR CODE