研究生: |
謝策閔 Tse-Min Hsieh |
---|---|
論文名稱: |
利用microarray data來建構人類的發炎系統基因調控網路 On the Gene Regulatory Network of Systemic Inflammation in Human via Microarray Data |
指導教授: |
陳博現
Bor-Sen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 發炎 、網路 、基因 、調控 |
外文關鍵詞: | inflammatory, inflammation, gene, regulatory, network |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景
發炎反應是很多人類疾病中的一個特徵,當主要的治病因素未知時,建構發炎基因調控網路有時能提供我們更多的理解來幫助找出病徵。因此,去了解發炎反應的機制是對於疾病的了解和治療的方式有很大的幫助。
結果
這本篇論文中,我們使用了很多理論跟資料庫,來描述動態機基因轉錄反應。我們是利用人類的白血球動態基因表現量接收到發炎的刺激(細菌毒素)來計算基因調控網路的動態參數,而根據這些參數,我們可找出在發炎反應中的特徵基因來幫助臨床上的研究。
結論
在這篇論文中,我們利用運算分析各種不同類型的資料來有效率的選擇出可能的調控子(regulators)來模擬出發炎轉錄機制。
第一章 簡介
由於DNA microarray 能夠看出病源體進入人體後,寄主細胞中巨大的基因表現量的改變,這可以幫助系統生物學家在做人類的發炎反應研究中有更多的理解。但是要克服如何辨識和找出有關生物的意義在這麼大量的資料當中,是一個挑戰。在本篇論文中,藉由我們發展出來的方法,能夠比較發炎基因調控網路在發炎和正常時不同。再使用動態表現量模擬分析,能有效實現完整的動態發炎基因網路機制。
(有關本章詳細內容,請參考英文版論文第一章)
第二章 方法
藉由許多大規模的生物實驗相關的文獻結合資料庫,我們可以建立粗略的網路,再利用Cross-correlation和統計方法Akaike Infromation Criterion (AIC) 逐步篩選,進而得到發炎動態基因調控網路。
(有關本章詳細內容,參考英文版論文第二章)
第三章 結果
本論文針對本論文的目標基因來分析結果,依據現有的生物知識及文獻探討,以及將本文所找出的調控之調控能力加以量化探討,最後建構整個調控網路的架構。
(有關本章詳細內容,參考英文版論文第三章)
第四章 討論與結論
我們不但成功的建立出發炎動態基因調控網路,並比較在發炎情況和正常期情況時的不同,總結本論文主要貢獻及優點,相信在現今生物晶片的大量發展下,可以藉由本文所提供的系統化分析方式,深入探討影響基因表現的調控網路。未來將可利用本分析技巧預測基因表現及提供實驗方向。
(有關本章詳細內容,參考英文版論文第四章)
Background:
Inflammation is a hallmark of many human diseases. When primary pathogenetic events are unknown, construction of gene regulatory network of inflammation is sometimes the best way to gain more insight into it. To better elucidate the mechanisms underlying systemic inflammation is an important topic to monitor disease progress for individual treatment regimens. It is more appealing to construct a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases.
Results:
In this study, we present a gene regulatory network via database (Ensembl, JASPAR), Cross-correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC) to describe genome-wide transcriptional responses in the context of dynamic genes, which are regulated by transcription factors (TFs) including family. This approach is based on the dynamic equation of blood leukocyte gene expression profiles of human subject to receive an inflammatory stimulus (bacterial endotoxin). Based on the magnitudes of kinetic parameters of dynamic gene regulatory network, we could identify significant properties (such as susceptibility to infection) of inflammation systems, which are useful for clinic research.
Conclusion:
It is important to find that the transcriptional programs are modified as cell progresses a reaction to change environmental conditions. In this study, a computational analysis of multiple types of data was developed to efficiently select candidates of regulators of the network in the inflammation system. Compared with previous results in literature, the proposed gene network construction method is found with significant improvement.
1. Chang WC, Li CW, Chen BS: Quantitative inference of dynamic regulatory pathways via microarray data. BMC bioinformatics 2005, 6:44.
2. Lin LH, Lee HC, Li WH, Chen BS: Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC bioinformatics 2005, 6:258.
3. Vu TT, Vohradsky J: Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic acids research 2007, 35(1):279-287.
4. Chen HC, Lee HC, Lin TY, Li WH, Chen BS: Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics (Oxford, England) 2004, 20(12):1914-1927.
5. Baldwin AS, Jr.: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annual review of immunology 1996, 14:649-683.
6. Baeuerle PA, Baichwal VR: NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Advances in immunology 1997, 65:111-137.
7. Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual review of immunology 1998, 16:225-260.
8. Hayden MS, Ghosh S: Signaling to NF-kappaB. Genes & development 2004, 18(18):2195-2224.
9. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S: Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes & development 1995, 9(22):2723-2735.
10. Godessart N, Kunkel SL: Chemokines in autoimmune disease. Current opinion in immunology 2001, 13(6):670-675.
11. Kaplansky G, Bongrand P: Cytokines and chemokines. Cellular and molecular biology (Noisy-le-Grand, France) 2001, 47(4):569-574.
12. Paul WE, Seder RA: Lymphocyte responses and cytokines. Cell 1994, 76(2):241-251.
13. Makarov SS: NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis research 2001, 3(4):200-206.
14. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS: NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(23):13859-13864.
15. Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420(6917):860-867.
16. Parkin J, Cohen B: An overview of the immune system. Lancet 2001, 357(9270):1777-1789.
17. Christopherson K, 2nd, Hromas R: Chemokine regulation of normal and pathologic immune responses. Stem cells (Dayton, Ohio) 2001, 19(5):388-396.
18. Luster AD: The role of chemokines in linking innate and adaptive immunity. Current opinion in immunology 2002, 14(1):129-135.
19. Santamaria P: Cytokines and chemokines in autoimmune disease: an overview. Advances in experimental medicine and biology 2003, 520:1-7.
20. Foxwell BM, Bondeson J, Brennan F, Feldmann M: Adenoviral transgene delivery provides an approach to identifying important molecular processes in inflammation: evidence for heterogenecity in the requirement for NFkappaB in tumour necrosis factor production. Annals of the rheumatic diseases 2000, 59 Suppl 1:i54-59.
21. Dinarello CA, Gelfand JA, Wolff SM: Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. Jama 1993, 269(14):1829-1835.
22. Kitano H, Oda K: Robustness trade-offs and host-microbial symbiosis in the immune system. Molecular systems biology 2006, 2:2006 0022.
23. Werner SL, Barken D, Hoffmann A: Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science (New York, NY 2005, 309(5742):1857-1861.
24. Muzio M, Polentarutti N, Bosisio D, Prahladan MK, Mantovani A: Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. Journal of leukocyte biology 2000, 67(4):450-456.
25. Takeda K, Kaisho T, Akira S: Toll-like receptors. Annual review of immunology 2003, 21:335-376.
26. Davidson EH, McClay DR, Hood L: Regulatory gene networks and the properties of the developmental process. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(4):1475-1480.
27. Hasty J, McMillen D, Collins JJ: Engineered gene circuits. Nature 2002, 420(6912):224-230.
28. Hood L: Systems biology: integrating technology, biology, and computation. Mechanisms of ageing and development 2003, 124(1):9-16.
29. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA et al: Computational discovery of gene modules and regulatory networks. Nature biotechnology 2003, 21(11):1337-1342.
30. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK et al: A network-based analysis of systemic inflammation in humans. Nature 2005, 437(7061):1032-1037.
31. Wu WS, Li WH, Chen BS: Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC bioinformatics 2006, 7:421.
32. Pahl HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18(49):6853-6866.
33. Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S: Integrative model of the response of yeast to osmotic shock. Nature biotechnology 2005, 23(8):975-982.
34. Breitkreutz BJ, Stark C, Tyers M: Osprey: a network visualization system. Genome biology 2003, 4(3):R22.
35. Oppenheim JJ, Feldmann M, Durum SK: Cytokine reference : a compendium of cytokines and other mediators of host defense. San Diego: Academic Press; 2001.
36. Zou M, Conzen SD: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics (Oxford, England) 2005, 21(1):71-79.
37. Johansson R: System modeling and identification. Englewood Cliffs, NJ: Prentice Hall; 1993.