研究生: |
呂旼儒 Lu, Ming-Ru |
---|---|
論文名稱: |
超導共振腔體中央直線段長度對電磁場特性之影響 Length Effect of Central Straight Section on the Electromagnetic Characteristics of Superconducting Radio-frequency Cavity |
指導教授: |
葉孟考
Yeh, Meng-Kao |
口試委員: |
林明泉
Lin, Ming-Chyuan 陳文華 Chen, Wen-Hwa |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 超導共振腔體 、共振頻率 、表面磁場 、結構變形 |
外文關鍵詞: | SRF cavity, Resonance frequency, Surface magnetic field, Structural deformation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是對超導共振腔體進行結構變形與高頻電磁場分析,根據不同模擬方式得到之結果進行探討。使用商用有限單元分析軟體ANSYS建立超導共振腔之模型來進行分析,由於分析時所需之基頻共振模態為TM010之軸對稱形式,所以只建立結構之四分之一模型,搭配適當之邊界條件並設定單元之相關電磁常數即可代表全模型之模擬結果。於使用HF120單元進行模擬時,討論選擇此單元之一階或是二階模式對超導共振腔體之高頻電磁場分析結果造成之影響,分別就共振頻率之收斂性與腔體表面磁場之分布進行探討。文中進行實驗驗證,實驗時使用之腔體以銅製作,分別探討實驗腔體受到軸向位移、溫度變化、軸向負載、外部壓力差時腔體之共振頻率變化量是否與模擬相等。文中也將討論改變腔體中心直線段長度對於腔體共振頻率之影響,並分別討論腔體未變形時與腔體受到內外壓力差產生之結構變形與受到溫度變化時之共振頻率之改變 。
This study investigates the structure deformation and high-frequency electromagnetic characteristics of a superconducting radio frequency (SRF) cavity. The numerical model is established by the commercial finite element software ANSYS. Since the fundamental resonance mode of this SRF cavity is axially symmetric, called the TM010 mode, one quarter of the full structure with proper boundary conditions is modeled. Two options of HF120 element, the first order and the second order elements are used to investigate the difference and it is concluded that second-order options shall be adopted for this study. The simulation results are verified with experimental tests on a copper cavity. The resonance frequency drifts of this cavity under various situations, such as axial displacements, temperature change, axial loading and external pressure are all measured to compare with the simulation results. The effects of length of the central straight section on deformation and resonance frequency of the 1.5 GHz cavity are also evaluated.
1. F.R. Elder, A.M. Gurewitsch, R.V. Langmuir and H.C. Pollock, “Radiation from Electrons in a Synchrotron,” Physical Review, Vol. 71, pp. 829-830, 1947.
2. N. Akdogan, Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors, Ruhr-Universitat Bochum Bochum, Germany, 2008.
3. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No.46, pp. 14-19, 2000。
4. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerators,” Superconducting Science and Technology, Vol. 14, pp. 28-51, 2001.
5. V. D. Shemeliny , G. H. Hoffstaetter, “First-Principle Approach for Optimization Cavity Shape for High Gradient and Low Loss,” Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012
6. M. Meidlinger, T.L. Grimm, W. Hartung, “Design of Half-reentrant SRF cavities,” Physica C, Vol. 441, pp. 155–158, 2006.
7. T. Furuya, K. Akai, K. Asano, E. Ezura, K. Hara, et al., “A Prototype Module of a Superconducting damped cavity for KEKB,” Proc. EPAC96, 1996, pp. 2121-2123.
8. H. Padamsee, P. Barnes, C. Chen, W. Hartung, J. Kirchgessner, D. Moffat, R. Ringrose, D. Rubin, Y. Samed, D. Saraniti, J. Sears, Q.S. Shu, and M. Tigner, “Design Challenges for High-current Storage rings,” Part. Accel. Vol. 40, 1992, pp. 17-41.
9. R. Valdiviez, D. Schrage, F. Martinez, W. Clark,” The Use of Dispersion Strengthened Copper in Accelerator Designs,” XX International Linac Conference, Monterey, California, 2000.
10. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, New York: Wiley, 1998.
11. S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays, R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin and J. Sears, “Development of Superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
12. S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF System Upgrade for Short Bunch Operation of CESR,” Report SRF 010717-05, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 2001.
13. S. Belomestnykh, “The High Luminosity Performance of CESR with the New Generation Superconducting Cavity,” Report SRF 990407-03, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 1999.
14. E. Chojmacki and J. Sears, “Superconducting RF Cavities and Cryogenics for the CESR III upgrade,” Report SRF 990716-09, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 1999.
15. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, Wiley Interscience, New York, 2000.
16. M.G. Rao and P. Kneisel, “Thermal and Mechanical Properties of Electron Beam Welded and Heated-treated Niobium for Tesla,” Continuous Electron Beam Accelerator Facility Newport News﹐pp. 1-7, 1993.
17. M.G. Rao and P. Kneisel, “High RRR Material Properties of Niobium and Specifications for Fabrication of Superconducting Cavities,” Fermilab, TD-06-048, 2006.
18. M.F. Thomas, Cryogenic Engineering, Marcel Dekker Inc﹐pp. 181-214, 1997.
19. K. Ishio, K. Kikuchi, M. Mizumoto and A. Naito, “Fracture Toughness and Mechanical Properties of Pure Niobium and its Welded Joints of Superconducting Cavity at 4K,” 9th Workshop on RF Superconductivity, 1999.
20. C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
21. T. S. Byun, S. H. Kim, J. Mammosser, “Low-temperature Mechanical Properties of Superconducting Radio Frequency Cavity Materials,” Journal of Nuclear Materials, Vol. 392, pp. 420–426, 2009.
22. R.P. Walsh, R.R. Mitchell, V.T. Toplosky and R.C. GentZlinger, “Low Temperature Tensile and Fracture Toughness Properties of SCRF Cavity Structural Materials,” 9 th Workshop on RF- Superconductivity, 1999.
23. J. Knobloch, W. Hartung, and H. Padamsee, “Enhanced Susceptibility of Nb Cavity Equator Welds to the Hydrogen Related Q-virus,” Report SRF 981012-12, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
24. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasiblity Study of Nb/Cu Clad Superconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
25. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K.M. Schirm, M. Taufer and W. Weingarten, “Analysis and Results of the Industrial Production of the Superconducting Nb/Cu Cavities for the LEP 2 Project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995.
26. G. Myneni, P. Kneisel, “High RRR Niobium Material Studies,” JLAB-TN-02-01
27. H. Padamsee, “Review of Experience with HOM Damped Cavities,” Report of SRF 980612-04, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
28. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997.
29. J. Kirchgessner, “The Use of Super Conducting RF for High Current Applications,” Particle Accelerators, Vol. 46, pp. 151-162, 1994.
30. J. Mammosser, P. Kneisel and J.F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” The Institute of Electrical and Electronics Engineers, pp. 947-949, 1993.
31. Y.C. Tsai, “Studies of High-order-mode Suppression in Storage Ring RF Cavities,” Ph.D. Dissertation, National Tsing Hua University, 1997.
32. 陳家逸, “高頻共振腔高次模抑制方法之研究,” 國立清華大學碩士論文, 2003.
33. G. H. Luo, L. H. Chang, C.C. Kuo, M. C. Lin, R. sah, T.T. Yang and Ch. Wang, “The Superconducting RF Cavity and 500 mA Beam current Upgrade Project at Taiwan Light Source,” Proceeding of European Particle Accelerator Conference, pp. 654-656, Vinena, Austria, 2000.
34. J. Kirchgessner, “Thoughts on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat, ” Report SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1994.
35. 陳伯毅, “低溫超導共振腔之挫曲及變形分析與實驗,” 國立清華大學碩士論文, 2003.
36. 鍾明忠, “共振腔結構受端面位移影響之模態分析與實驗,” 國立清華大學碩士論文, 2004.
37. E. Zaplatin, C. Compton, W. Hartung, M. J. Johnson, F. Marti, J. Oliva, J. Popielarski, and R. C. York, “Strucural Analyses of MSU Quarter-waver Resonators,” Proc. SRF2009, 2009, pp. 560-563.
38. E. Zaplatin, “FZJ SC Cavity Coupled Analyses,” Proc. of the 12th Workshop on RF Superconductivity, 2005 , pp. 342-346.
39. 高福聲, “低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學碩士論文, 2002.
40. M.C. Lin, Ch. Wang, L. H. Chang, G. H. Luo and P. J. Chou, “A Coupled-field Analysis on RF Cavity,” Particle Accelerator Conference, Chicago, U.S.A., 2001.
41. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cavity,” Proceedings of EPAC, Paris, pp.2259-2261, 2002.
42. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, “Effect of Material Properties on Resonance Frequency of CESR-III Type 500 MHz SRF Cavity,” Proceedings of the 2001 Particle Acceleration Conference, PP.1371-1374, 2004.
43. 郭泓毅, “超導共振腔之結構變形對內部電磁場特性之影響,” 國立清華大學碩士論文, 2013.
44. D. K. Cheng, Field and wave electromagnetic, Addison Wesley, New York, 1989.
45. A. V. Kudrin and E. Y. Petrov, “Cylindrical Electromagnetic Waves in a Nonlinear Nondispersive Medium : Exact solutions of the Maxwell equations,” JEPT, 110, pp.537-548, March 2010.
46. 鄭傑仁, “由共振腔內部電磁場特性推算腔體材料的機械性質,” 國立清華大學碩士論文, 2005.
47. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
48. 王皓宇, “在外力負載下圓柱形金屬共振腔之高頻電磁場共振頻率與機械材料特性之相關性研究,”國立清華大學碩士論文, 2011.
49. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
50. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.