研究生: |
莊景清 Chuang, Ching-Ching |
---|---|
論文名稱: |
實調和函數絕對值的支配理論 Domination in Modulus for Real Harmonic Functions |
指導教授: |
程守慶
Chen, So-Chin |
口試委員: |
李大中
Lee, Ta-Chung 王國仲 Wang, Kuo-Zhong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 調和函數 、複變數 、支配 、最大值原理 、哈代空間 、奇異測度 |
外文關鍵詞: | harmonic function, complex variable, domination, maximum principle, Hardy space, singular measure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在支配理論的脈絡下,透過零點集與Poisson 積分表示來研究實
調和函數最大值原理的一種型式。
In terms of domination, a variation of the maximum principle for real harmonic functions is studied by utilizing zero sets and the Poisson integral representation.
[1] F. F. Bonsall, Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 471-477.
[2] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183
[3] C. Carathéodory, Theory of Functions of a Complex Variable, Chelsea Publishing Company, New York, 1954.
[4] S.-C. Chen, C.-C. Chuang, On dominating sets for real harmonic functions in Lp norm, submitted.
[5] N. Danikas and W. K. Hayman, Domination on sets and in H^p, Results Math. 34 (1998), 85-90.
[6] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
[7] W. K. Hayman, On a conjecture of Korenblem, Analysis 19 (1999), 195-205.
[8] W. K. Hayman, Domination on sets and in norm, Contemp. Math. 404 (2006), 103-109.
[9] A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math. 79 (1999), 335-344.
[10] K. Hoffman, Banach Spaces of holomorphic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
[11] B. Korenblum, A maximum principle for the Bergman space, Publ. Mat. 35 (1991), 479-486.
[12] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Company, New York, 1987.
[13] Z.-Y. Wen, L.-M. Wu, and Y.-P. Zhang, Set of zeros of harmonic functions of two variables, Harmonic Analysis, Tianjin (1988), Lecture Notes in Mathematics, 1494, Springer, Berlin (1991), 196-203.
[14] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, Inc., New York, 1977.