簡易檢索 / 詳目顯示

研究生: 莊景清
Chuang, Ching-Ching
論文名稱: 實調和函數絕對值的支配理論
Domination in Modulus for Real Harmonic Functions
指導教授: 程守慶
Chen, So-Chin
口試委員: 李大中
Lee, Ta-Chung
王國仲
Wang, Kuo-Zhong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 17
中文關鍵詞: 調和函數複變數支配最大值原理哈代空間奇異測度
外文關鍵詞: harmonic function, complex variable, domination, maximum principle, Hardy space, singular measure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在支配理論的脈絡下,透過零點集與Poisson 積分表示來研究實
    調和函數最大值原理的一種型式。


    In terms of domination, a variation of the maximum principle for real harmonic functions is studied by utilizing zero sets and the Poisson integral representation.

    1 Introduction-------------------------------- 1 2 Domination of real harmonic functions------- 2 3 Domination of h^p spaces (1<p≦∞)-------- 6 4 Domination of positive harmonic functions--- 12

    [1] F. F. Bonsall, Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 471-477.
    [2] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183
    [3] C. Carathéodory, Theory of Functions of a Complex Variable, Chelsea Publishing Company, New York, 1954.
    [4] S.-C. Chen, C.-C. Chuang, On dominating sets for real harmonic functions in Lp norm, submitted.
    [5] N. Danikas and W. K. Hayman, Domination on sets and in H^p, Results Math. 34 (1998), 85-90.
    [6] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
    [7] W. K. Hayman, On a conjecture of Korenblem, Analysis 19 (1999), 195-205.
    [8] W. K. Hayman, Domination on sets and in norm, Contemp. Math. 404 (2006), 103-109.
    [9] A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math. 79 (1999), 335-344.
    [10] K. Hoffman, Banach Spaces of holomorphic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
    [11] B. Korenblum, A maximum principle for the Bergman space, Publ. Mat. 35 (1991), 479-486.
    [12] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Company, New York, 1987.
    [13] Z.-Y. Wen, L.-M. Wu, and Y.-P. Zhang, Set of zeros of harmonic functions of two variables, Harmonic Analysis, Tianjin (1988), Lecture Notes in Mathematics, 1494, Springer, Berlin (1991), 196-203.
    [14] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, Inc., New York, 1977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE