簡易檢索 / 詳目顯示

研究生: 張睦東
Mo-Tung Chang
論文名稱: 氮化矽薄膜及氧化鎢奈米線成長於矽基板上之探討
Characterizations of Silicon Nitride and Tungsten Oxide Nanowires on Si (111) and Si (100)
指導教授: 周立人
L. J. Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 70
中文關鍵詞: 氮化矽氧化鎢奈米線場發射
外文關鍵詞: silicon nitride, tungsten oxide, nanowires, field emission
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微電子工業的縮小化演進,傳統的熱氧化矽材料已經無法符合時代的要求.因此許多取代材料被學術界及工業界加速研發中,如高介電材料(High-K materials).在此篇論文,我們研究氮化矽磊晶薄膜(Si3N4)於介電材料上的應用.它最大的優點在於能和矽基板相容.這使得高品質的磊晶氮化矽薄膜和已成熟的矽電子工業得以相結合,利用清華大學物理系果尚志老師以電漿輔助分子束磊晶系統成長的氮化矽薄膜,研究其結構與電性上的關聯,評斷其成為微電子工業的可能性

    隨著物質小尺寸化至奈米境界,許多的奈米結構被科學家所探討,其中奈米線有許多的應用,如當作場發射元件,奈米元件的連接線...等.在此篇論文中,我們研究氧化鎢(WO3)奈米線的應用性,我們發現它除了有優良的場發射性質,也有室溫下光致發光的特性,未來很有發展成奈米元件的潛力.我們已能成功將氧化鎢奈米線成長於四吋的矽基板上,這有助於結合既存的矽基工業和氧化鎢奈米線,實為一項新的突破.


    Part 1 (Characterizations of The Epi-nitride)
    High-K dielectric materials have attracted much attentation due to the requirements for the shrinkage of the nano-electronic devices. In this study, single crystal silicon nitrides have been prepared by plasma enhanced MBE system, and investigated by the HREM analysis as well as C-V measurements. The d-spacing of this epi-film observed from HRTEM image along the c-axis is 13.8 % larger than the theoretical value in the bulk material. It shows that the c-axis of this epi-layer has been expanded due to the stress. It would effect the electric characteristics. The electric characteristics reveal that the electrons are the active carriers injected into the insulator at positive bias. The superiority of this study is that we can couple this unique epitaxial insulator to the mature silicon process. So that, the next generation MIS structure can be achieved.

    Part 2 (Characterizations of The Tungsten Oxide Nanowires)
    Tungsten oxide nanowires have been synthesized on the large scale silicon substrate in this study. The synthesized methods are described as the following. First, the clean 4 inch Si wafer with native oxide was loaded into the high vacuum chamber at a pressure of 3.0x10-8 mbar. The substrate was heated to 8000C and thermally treated in ammonia and tungsten vapor ambient for 20 minute. When the chamber cooled down to room temperature, the upper surface of the silicon substrate was entirely covered with a semi-transparent film. The nanostructure and morphology as well as composition characterization of the tungsten oxide nanowires were carried out and the plausible growth mechanism to explain our growth of the nanowires were proposed. Finally, the electron field emission property was examined to confirm the potential application as the FE emitter device. The PL spectrum of these products shows the green peak 470 nm due to the oxygen defect.
    The superiority of the process is the combination of the nano-technology and existed silicon industry. These nano-products have great potential for application of nano-device.

    Ch1 Introduction 6 1-1.1 the high-K material 6 1-1.2 The Introduction about The Silicon Nitride 7 1-1.3 The Introduction about The Epi-nitride 8 1-1.4 The Process for Growing The Epi-nitride 9 1-1.5 The Overview for The Study 9 1-2.1 The Introduction for The Nano-World 10 1-2.2 The Overview about Nanowires 11 1-2.3 The Growth Mechnism about Nanowires 12 1-2.4 The Tungsten Oxide material 12 1-2.5 The Tungsten Oxide nanowires 13 1-2.6 The Overview for The Study 13 Ch2 Experimental Procedures 14 2-1.1 Silicon Wafer Clean 15 2-1.2 Reconstructure Formation 16 2-1.3 Growth of β-Si3N4 16 2-1.4 High Resolution Transmission Electron Microscopy ( HRTEM ) Observation 17 2-1.5 Pattern Transfer Process 18 2-1.6 Electrode Film Deposition 19 2-1.7 Lift off process 20 2-1.8 Electrical Characteristics 20 2-2.1 The Tungsten Oxide Nanowires Synthesis 22 2-2.2 Morphology Observation ( Scanning Electron Microscopy ) 23 2-2.3 X-ray Diffraction ( XRD ) Spectrum 23 2-2.4 X-Ray Photoelectron Spectrum ( XPS ) Measurement 23 2-2.5 Energy Dispersive Spectrometer ( EDS ) analysis 24 2-2.6 High Resolution Transmission Electron Microscopy ( HRTEM ) and TEM Observation 24 2-2.7 Field Emission Measurement 24 2-2.8 Photoluminesce Measurement 25 Ch3 Results and Discussions 26 3-1.1 The Sweep Path Effects on The C-V Curve 26 3-1.2 The Temperature Effects on The C-V Curve 27 3-1.3 The Frequency Effects on The C-V Curve 28 3-1.4 The interface trap density 28 3-1.5 The nanostructure analysis 29 3-1.6 The Deformation Effects on The Electronic Characteristics 30 3-2.1 The Surface Morphology of The Nanowires 31 3-2.2 The Synthesis Mechanism of The Nanowires 31 3-2.3 The Nanostructure Analysis of The Nanowires 32 3-2.4 The Mechanism of The Nanowires Anisotropic Growth 33 3-2.5 The Field Emission Property of The Nanowires 35 3-2.6 The Photoluminescence Property of The Nanowires 36 Ch4 Summary and Conclusion 38 Reference 40 Tables Captions 46 Figures captions 49

    Reference
    Chapter 1
    [1] D. D. Antono, “VLSI, a combination field of nanotechnology and IT, ’’ IECI Japan Series, 3, 12 (2001)
    [2] The International Technology Roadmap for Semiconductors ,” http://public.itrs.net .
    [3] Paui S. Peercy, “The Drive to Miniaturization”, Nature, vol. 406, pp1023 (2000).
    [4] The International Technology Roadmap for Semiconductors (ITRS Roadmap), 2001 Edition.
    [5] The International Technology Roadmap for Semiconductors (ITRS Roadmap), 2001 Edition.
    [6] Kuniyoshi Yoshikawa, “Technology requirements for next decade flash memories”, 2000 ESSDERC, p11.
    [7] Michael H. Jones and Stephe H. Jones, Virginia Semiconductor, www.virginiasemi.com
    [8] Kuniyoshi Yoshikawa, “Technology requirements for next decade flash memories”, 2000 ESSDERC, p11.
    [9] Douglas A. Buchanan, “Scaling the gate dielectric materials, integration, and reliability”, IBM J. Res. Develop., vol. 43, pp245 (1999).
    [10] M. She et at., “JVD Silicon Nitride as Tunnel Dielectric in p-Channel Flash Memory”, IEEE Electron Device Letters, vol. 23 (2002).
    [11] William D. Brown and Joe E. Brewer, “Nonvolatile Semiconductor Memory Technology”, Institute of Electrical and Electronics Engineers, Inc., New York (1998).
    [12] W. L. Warren, J. Kanicki and P. M. Lenahan, Appl. Phys. Lett., 59 (14), 30 September 1991.
    [13] Z. Sassi, K. Chafik, J. C. Bureau and A. El Hajbi, Applied Surface Science 187, 2002, 3-17.
    [14] S. Ishidzuka, Y. Igari, T. Takaoka and I. Kusunoki, Applied Surface Science 130-132, ( 1998 ), 107-111.
    [15] Z. A. Weinberg, K. J. Stein, T. N. Nguyen and J. Y. Sun, Appl. Phys. Lett. 57 ( 12 ), 17.
    [16] Daisuke Matsushita, Hiroya Ikeda, Akira Sakai, Shigeaki Zaima and Yukio Yasuda, thin solid films, 396 ( 2000 ), 293-296.
    [17] T. P. Ma, IEEE Transactions on Electron Devices, 45, 3, March 1998.
    [18] A. Mallik, X. W. Wang and T. P. Ma, J. Appl. Phys. 79 (11), 1 June 1996.
    [19] Xin Gua and T. P. Ma, IEEE Electron Device Letters, 19, 6, June 1998.
    [20] H. Ahn, C. L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, “Structure determination of the Si3N4/Si(111)-(8×8) surface: A combined study of Kikuchi electron holography, Scanning Tunneling Microscopy, and ab initio calculations”, Physical Review Letters, vol. 86, pp2818 (2001).
    [21] Y. N Xu, W. Y. Ching, “Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide”, Physical Review B, vol. 51, pp17379 (1995).
    [22] G. Zhai, J. Yang, N. Cue, and X.-S. Wang, “Surface structure of silicon nitride thin films on Si(111)”, Thin Solid Films, vol. 366, pp121 (2000).
    [23] C. L. Wu, J, L, Hsieh, H. D. Hsueh and S. Gwo, “Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy”, Physical Review B, vol. 65, pp045309-1 (2002).
    [24] P. D. Yang, C. M. Lieber, J. Mater. Res. 1997, 12, 2981.
    [25] B. D. Bao, Y. F. Chen, N. Wang, Appl. Phys.Lett. 2002, 81, 757.
    [26] M. H. Huang, S. Mao, H. Feich, H.Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001,292, 1897.
    [27] M. H. Huang, Y. Wu, H. Feich, N. Tran, E. Weber , P. Yang, Advanced Material, 2001, 13,113.
    [28] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang, J. Phys. Chem. B 2002, 106, 1274.
    [29] X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, L. D. Zhang, App. Phys. A 2002, 74, 437.
    [30] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kee, Adv. Mater. 2000, 12, 746.
    [31] Y. Liu, C. Yin, W Wang, Y. Zhan, G. Wang, J. Mater. Sci. Lett. 2002, 21, 137.
    [32] Z. W. Pan, Z. R. Dai, Z. L. Wang, Appl. Phys. Lett. 2002, 80, 309.
    [33] Zu Rong Dai, Zheng Wei Pan, and Zhong L. Wang, Advanced Functional Materials, 2003, 13, No.1, 9-24.
    [34] A. Aird, M. C. Domeneghetti, F. Mazzi, V. Tazzoli, E. K. H. Salje, J. Phys. : Condens. Matter 10 (1998) L569.
    [35] D. J. Taylor, J. P. Cronin, L. F. Allard, Jr. and D. P. Birnie, Chem. Mater. 1996, 8, 1396-1401.
    [36] M. Di Giulio, D. Manno, G. Micocci, A. Serra and A. Tepore Appl. Phys. 30, 1997, 3211-3215.
    [37] Yan Qiu Zhu, Weibing Hu, Wen Kuang Hsu, Mauricio Terrones, Nicole Grobert, Jonathan P. Hare, Harold W. Kroto, David R. M. Walton Chem. Phys. Lett. 309 (1999) 327-334.
    [38] Y. B. Li, Y. Bando, D. Golberg, K. Kurashima, Chem. Phys. Lett.367 (2003) 214-218.
    [39] Gang Gu, Bo Zheng, W. Q. Han, Siegmar Roth, and Jie Liu, Nano Letters, 2002, 2, No 8, 849-851.
    [40] Yubao Li, Yoshio Bando, Dmitri Golberg, Adv. Mater. 2003, 15, 15, August 5.
    [41] Hang Qi, Cuiying Wang, Jie Liu, Adv. Mater. 2003, 15, 5, March 4.
    [42] Zongwen Liu, Yoshio Bando, Chengchun Tang, Chem. Phys. Lett.372 (2003) 179-182.
    Chapter 3
    [43] D. K. Schroder, SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION, 2th ed. Wiley, 1998.
    [44] E. H. Nicollian, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, 1982.
    [45] Ying Shi, “Electrical Properties of High-Quality Ultrathin Nitride/Oxide Stack Dielectrics,” IEEE, Trans Electron Devices, vol. 46, February 1999.
    [46] A. M. Morales, C. M. Liber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science , 279, 208 (1998).
    [47] Y. Y. Wu, P. D. Yang,“ Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Soc., 123, 3165 (2001).
    [48] P. D. Yang and C. M. Liber,“ Nanostructured high-temperature superconductors : Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res., 12, 2981 (1997).
    [49] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides
    ,” Science, 291, 1947 (2001).
    [50] Zhang, R. Q.; Lifshiz, Y.; Lee, S. T. ,“Oxide assisted growth of semiconducting nanowires,” Adv. Mater., 15, 637 (2003).
    [51] Wang, N.; Zhang, Y. F.; Tang, Y. H.; Lee, C.S.; Lee, S. T.,“SiO2-enhanced synthesis of Si nanowires by laser ablation,”Appl. Phys. Lett., 73, 3902 (1998).
    [52] Wang, Q. H.; Sethur, A. A.; Lauerhaas, M. J.; Dai, J. Y.; Seeling, E. W., “A nanotube based field-emission flat panel display,” Appl. Phys. Lett., 72, 2912 (1998).
    [53] C. Y. Zhi, X. D. Bai, E. G. Wang, Appl. Phys. Lett. 2002, 81, 1690.
    [54] Fowler, R. H.; Nordheim, L. W.; Proc. R. Soc. London, Ser. A 1928, 119, 173.
    [55] Collins, P. G.; Zettl, “Unique characteristics of cold cathode carbon nanotube matrix field emitters,” A. Phys. Rev. B, 55, 9391 (1997).
    [56] Gomer, R. Field emission and Field Ionization (Harvard University Press, Cambridge, 1961), P. 195.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE