簡易檢索 / 詳目顯示

研究生: 鄭創元
論文名稱: 稀有物種相對豐富度之統計估計法
Statistical Estimation of the Relative Abundance for Rare Species
指導教授: 趙蓮菊
口試委員: 黃文瀚
沈宗荏
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 75
中文關鍵詞: 稀有物種相對豐富度估計量趙蓮菊
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 估計樣本中出現次數較少的稀有物種之相對豐富度時,使用樣本相對豐富度的估計方法容易造成極大的誤差,而且也忽略了樣本中未出現的物種,因此必須作修正以得到更合適的估計方法。本文除了回顧Good (1953) 的估計量及Chao and Shen (2003) 利用樣本涵蓋率的概念推導出的估計量外,另外介紹其他五個針對稀有物種進行修正的估計方法。透過電腦模擬的方式,歸納出在不同的情況下,估計稀有物種相對豐富度表現較佳的估計量,並應用於實際資料中。


    第一章 緒論 1 第二章 符號與模式介紹及相關文獻回顧 5 2.1 符號與模式介紹 5 2.1.1 符號說明 5 2.1.2 抽樣方法及模式假設 6 2.2 相關文獻回顧 6 2.2.1 物種相對豐富度的估計 6 2.2.2 物種數的估計 10 第三章 物種相對豐富度估計 13 3.1 樣本中豐富物種與稀有物種的界定 13 3.2 相對豐富度估計 14 第四章 模擬研究與討論 23 4.1 模擬研究 24 4.1.1 群落設定 24 4.1.2 符號說明 25 4.1.3 拔靴法的修正 26 4.2 模擬結論 28 4.2.1 的情況 28 4.2.2 的情況 29 第五章 實例分析 31 5.1 資料描述 31 5.2 資料分析 31 第六章 結論 34 參考文獻 36 附錄A 相對豐富度估計量之模擬比較 (表) 39 附錄B 相對豐富度估計量之標準差模擬比較 (表) 47 附錄C 相對豐富度估計量之標準差模擬比較 (圖) 61

    [1] Burnham, K. P. and Overton, W. S. (1978). “Estimation of the size of a closed population when capture probabilities very among animals.” Biometrika, 65, 625-633.

    [2] Chao, A. (1984). “Nonparametric estimation of the number of classes in a population.” Scandinavian Journal of
    Statistics, 265-270.

    [3] Chao, A. (1987). “Estimating the population size for
    capture-recapture data with unequal catchability.” Biometrics, 43, 783-791.

    [4] Chao, A., Lee, S.-M. and Chen, T.-C. (1988). “A generalized Good’s nonparametric coverage estimator.” Chinese Journal of Mathematics, 16, 189-199

    [5] Chao, A. (1989). “Estimating population size for sparse data in capture-recapture experiment.” Biometric, 45, 427-438.

    [6] Chao, A., Ma, M.-C. and Yang, M. C. K. (1993). “Stopping rule and estimation for recapture debugging with unequal detection rates.” Biometrika, 80, 193-201.

    [7] Chao, A. and Shen, T.-J. (2003). “Nonparametric estimation of Shannon’s index of diversity when there are unseen species.” Environmental and Ecological Statistics, 10, 429-443.

    [8] Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T.-J. (2006). “Abundance-based similarity indices and their estimation when there are unseen species in samples.” Biometrics, 62, 361-371.

    [9] Chao, A., Chazdon, R. L., Lin, S.-Y., Colwell, R. K., and Jost, L. (2011). “Turing species sample frequency by Good-Turing’s theory.” Unpublished manuscript, NTHU, Hsinchu.

    [10] Efron, B. (1979). “Bootstrap methods: Another look at the jackknife.” The Annals of Statistics, 7, 1-26.

    [11] Efron, B. (2003). “Robbins, Empirical Bayes and microarrays.” The Annals of Statistics, 31, 366-378.

    [12] Esty, W. W. (1983). “A normal limit law for a nonparametric estimator of the coverage of a random sample.” The Annals of Statistics, 11, 905-912.

    [13] Esty, W. W. (1986). “The efficiency of Good’s nonparametric coverage estimator.” The Annals of Statistics, 14, 1257-1260.

    [14] Fisher, R. A., Steven Corbet, A. and Williams, C. B. (1943). “The relation between the number of species and the number of individuals in a random sample of an animal population.” Journal of Animal Ecology, 12, 42-58.

    [15] Gale, W. A. and Sampson, G. (1995). “Good-turing frequency estimation without tesrs.” Journal of Quantitative Linguistics, 2, 217-237.

    [16] Good, I. J. (1953). “The population frequencies of species and the estimation of population parameters.” Biometrika, 40, 237-264.

    [17] Harris, B. (1959). “Determining bounds on integral with
    applications to cataloging problems.” Annals of Mathematical Statistics, 30, 521-548.

    [18] Hass, P. J. and Stokes, S. L. (1998). “Estimating the number of classes in a finite population.” Journal of the American Statistical Association, 93, 1475-1487.

    [19] Holst, L. (1979). “A unified approach to limit theorem for urn model.” Journal of Applied Probability, 16, 154-162.

    [20] “2010國際生物多樣性年 International Year of Biodiversity”
    http://www.swan.org.tw/2010iyb/index.html

    [21] “Smithsonian Tropical Research Institute Center for Tropical Forest Science”
    http://www.ctfs.si.edu/site/Fushan/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE