簡易檢索 / 詳目顯示

研究生: 黎光憲
Li, Kuang-Hsien
論文名稱: 生醫應用之嵌入式系統設計
Embedded System Design for Biomedical Applications
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 黃柏鈞
Huang, Po-Chiun
李國賓
Lee, Gwo-Bin
黃元豪
Huang, Yuan-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 85
中文關鍵詞: 生醫應用嵌入式系統
外文關鍵詞: biomedical applications, embedded systems
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們提出了三種嵌入式系統,並利用嵌入式系統的優點,系
    統變得更小,將裝置變成可攜式的,我們不只應用在醫療領域方面,還延伸到運
    動領域,希望可以將醫療裝置達到定點照護的需求,而運動輔助裝置希望可以使
    運動員達到更有效率的訓練。
    近年來,心血管疾病是全球最常見的死因之一,佔全球疾病死亡的百分之三
    十。在許多醫學的統計資料上發現,一旦心臟疾病發作,其致死率是非常高的,
    而且許多人其實已經有潛在的危險性而不知。第一個雛型就是為心血管疾病去設
    計一個可以定點診斷測試的系統,目的是希望讓使用者在家中也可以更方便,且
    更便宜的費用達到在醫院一樣或更精準的診斷,其雛型主要分為:生物電晶體感
    測器、微流體系統、整合電路控制和螢幕顯示,而雛型大小為 60 公分×24 公分×
    22 公分。此系統主要是以 MSP430F5438A 去控制著其他電路,最小可以正確量
    測出每公升 0.1 毫克的濃度,並且完成蛋白質和臨床檢體的檢測,與奈微所王玉
    麟教授實驗室的大型機台有相同的趨勢曲線。
    接下來的應用為量測 A 型流感(H1N1),H1N1 原本是屬於豬隻中感染的疾
    病,為 A 型流感的其中一種分支,其傳染途徑與季節性流感相似。有別於上述的
    系統,這次是以 Arduino Nano 去控制,多了馬達可以讓整個流程自動化完成,
    並且有藍芽可以連線到智慧型手機,讓系統可以即時的顯示溫度曲線圖在手機上
    面,所以使用者只要等待量測結果即可,而我們的溫度控制可以達到每秒升溫 2.7
    度和降溫 0.3 度,並可以穩定控制在正負 1.5 度。
    最後以壓力感測器為主去研發,以 MSP432P401R 為中央處理器,使用
    MSP432 裡面的類比數位轉換器,收取感測器所量測到的值,而藍芽的部分是使
    用 CC2640R2F 去傳。資料方面可以即時的呈現,或者是選擇將資料記錄下來。
    首先我們研發一款智慧鞋墊,鞋墊裡面包含著 16 顆感測器:14 顆壓力感測器、1
    顆彎曲感測器收走路時的變化和 1 顆撞擊感測器紀錄腳跟著地的時刻。此系統針
    對下半身手術後需要復健治療的患者。紀錄左右腳的重量分配,將收集的資料供
    醫生分析病人的步態。我們將同樣的系統放在棒球上面,將壓力感測器放置在投
    球的位置上,分析投手施力點的力道,提供教練們更有效率的訓練,


    In this thesis, we proposed three kinds of different embedded systems to apply different
    applications and we used the advantages of embedded systems to let our designs be minia-
    turized and become portable. We applied not only in healthcare, but also in sports. The goal
    of the medical devices could comply with point-of-care testing and the auxiliary devices in
    sports could make the training of athletes more effective.
    Cardiovascular disease (CVD) is one of the most common causes of death in the world.
    In many medical statistics, it has been found out that once CVD occurs, the mortality rate is
    very high. The first prototype was a point-of-care system for CVD disease detection. The
    size of the prototype was 60 cm × 24 cm × 22 cm. This system was mainly controlled by
    MSP430F5438A. The limit of the concentration that we could detect was 0.1 milligram per
    liter. We finished the clinical specimen, including proteins and miRNA. The system could get
    the same trend curve of the large machine in the laboratory of Pro. Wang.
    The next biomedical embedded device was for influenza A (H1N1) detection. Its route of
    infection was similar to seasonal flu. In this whole system, the microcontroller was Arduino
    Nano to automatically execute the detection flow. Moreover, it could be connected to the
    smartphone by the Bluetooth. This system could even monitor the real-time temperature. The
    device had a temperature control system. The heating rate is 2.7

    C per second and the cooling
    rate is 0.3

    C per second. The precision of temperature can be controlled within 1.5

    C.
    Lastly, we developed the force detection system with MSP432P401R as the microcon-
    troller. This device could save the data and show the real-time pressure map. There were
    two possible applications. The first application was a smart insole for patients who require
    rehabilitation after surgery in the lower body. The insole included 14 force sensors to record
    the pressure map, one bend sensor to show the change of the feet and one strike sensor to seeii
    the heel strike when walking. The collected data could help doctors to analyze the patients’
    gaits. The second application was for baseball pitcher training. We putted the force sensor
    on a baseball. The collected information from the baseball could provide a more precise and
    effective training for the players.

    Contents Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Embedded Systems for Different Applications 5 2.1 Classifications of Embedded Systems . . . . . . . . . . . . . . . . . . . . . 6 2.2 Platforms of Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Applications of Embedded Systems . . . . . . . . . . . . . . . . . . . . . . 8 3 Compact Prototype for Cardiovascular Disease Point-of-Care Detection 11 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Microfluidic Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Bio-FET Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Integrated Microfluidic System . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Bio-FET Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.8 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37iv CONTENTS 3.9.1 Flow of the Microfluidic Chip . . . . . . . . . . . . . . . . . . . . . 37 3.9.2 Prototype implementation . . . . . . . . . . . . . . . . . . . . . . . 40 3.9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Portable Device for Rapid Influenza A (H1N1) Diagnosis 47 4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Microfluidic chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Color Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5 Temperature control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5.1 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 System Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.7.1 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.7.2 Real-time Temperature Monitoring . . . . . . . . . . . . . . . . . . 63 4.7.3 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . 65 4.7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Real-time System for Force Sensing 69 5.1 Force Sensing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.1 Force Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.3 System Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Smart Insole for Plantar Pressure Sensing . . . . . . . . . . . . . . . . . . . 77 5.4 Smart Baseball for Pitcher Finger Force Sensing . . . . . . . . . . . . . . . . 78 6 Conclusion and Future Works 81 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81CONTENTS v 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    [1] (2018) Fitbit alta. Fitbit. [Online]. Available: https://www.fitbit.com/tw/alta#features
    [2] (2018) RainbowS18. Rainbow. [Online]. Available: https://www.rainbow88shop.com/
    products/rainbow-s18-%E4%BA%8C%E4%BB%A3-%E6%99%BA%E8%83%BD%
    E6%89%8B%E7%92%B0
    [3] Y. L. Wang. Bioelectronics nanosystem lab. [Online]. Available: http://wang.nems.nthu.
    edu.tw/
    [4] G. B. Lee. Microfluidic biochips lab. [Online]. Available: http://mbl.pme.nthu.edu.tw/
    [5] J. Ganssle and M. Barr, Embedded System Dictionary, 2003.
    [6] Atmega328/P, Atmel, Nov. 2016.
    [7] MSP430x5xx and MSP430x6xx Family User’s Guide, Texas Instruments, Jun. 2008, rev.
    May 2014.
    [8] MSP432P401R, MSP432P401M SimpleLink Mixed-Signal Microcontrollers, Texas In-
    struments, 2017.
    [9] W. H. Organization, Global status report on noncommunicable diseases 2014. Geneva:
    World Health Organization, 2014.
    [10] P. M. Ridker, “Clinical application of c-reactive protein for cardiovascular disease de-
    tection and prevention,” Circulation, vol. 107, no. 3, pp. 363–369, 2003.84 BIBLIOGRAPHY
    [11] F. S. Apple, M. M. Murakami, L. A. Pearce, and C. A. Herzog, “Predictive value of
    cardiac troponin I and T for subsequent death in end-stage renal disease,” Circulation,
    vol. 106, no. 23, pp. 2941–2945, 2002.
    [12] P. Hunt, A. Richards, M. Nicholls, T. Yandle, R. Doughty, and E. Espiner, “Immunore-
    active amino-terminal pro-brain natriuretic peptide (nt-probnp): a new marker of cardiac
    impairment,” Clinical endocrinology, vol. 47, no. 3, pp. 287–296, 1997.
    [13] E. Leclerc, Y. Sakai, and T. Fujii, “Microfluidic PDMS (polydimethylsiloxane) biore-
    actor for large-scale culture of hepatocytes,” Biotechnology progress, vol. 20, no. 3, pp.
    750–755, 2004.
    [14] Y. Xia and G. M. Whitesides, “Soft lithography,” Annual review of materials science,
    vol. 28, no. 1, pp. 153–184, 1998.
    [15] W. H. Chang, C. H. Wang, S. Y. Yang, Y. C. Lin, J. J. Wu, M. S. Lee, and G. B. Lee,
    “Rapid isolation and diagnosis of live bacteria from human joint fluids by using an inte-
    grated microfluidic system,” Lab on a Chip, vol. 14, no. 17, pp. 3376–3384, 2014.
    [16] C. H. Chu, I. Sarangadharan, A. Regmi, Y. W. Chen, C. P. Hsu, W. H. Chang, G. Y.
    Lee, J. I. Chyi, C. C. Chen, S. C. Shiesh, G. B. L. Lee, and Y. L. Wang, “Beyond the
    Debye length in high ionic strength solution: direct protein detection with field-effect
    transistors (FETs) in human serum,” Scientific Reports, vol. 7, no. 5256, 2017.
    [17] DC Oilless Vacuum Pump, UNi-CROWN.
    [18] Vacuum Regulator/IRV20 Series, SMC.
    [19] MAR200 series, Mindman.
    [20] R. N. Fargo, “Three-way solenoid valve,” Apr. 15 1986, uS Patent 4,582,294.
    [21] 3 Port Solenoid Valve S070 Series, SMC.
    [22] PHOTOCOUPLER PS2502-1, -4, PS2502L-1, -4, California Eastern Laboratories, 2009.
    [23] LM317 3-Terminal Adjustable Regulator, Texas Instruments, 2016.BIBLIOGRAPHY 85
    [24] 128x64Dots Serial/Parallel LCD, Digole.
    [25] T. Instruments, “Datasheet: Msp430f5438a,” Technical Report. SLAS612E, Tech. Rep.,
    2009.
    [26] N. S.-O. I. A. H. V. I. Team, “Emergence of a novel swine-origin influenza a (h1n1) virus
    in humans,” New England journal of medicine, vol. 360, no. 25, pp. 2605–2615, 2009.
    [27] TCS3404, TCS3414 DIGITAL COLOR SENSORS, TAOS, 2011.
    [28] ULN200x, ULQ200x High-Voltage, High-Current Darlington Transistor Arrays, Texas
    Instruments, 2016.
    [29] Cold-Junction-Compensated K-Thermocouple-to-Digital Converter, MAXIM.
    [30] L298 DUAL FULL-BRIDGE DRIVER, STMicroelectronics, 2000.
    [31] FlexiForce Standard Model A301, Tekscan.
    [32] CC2640R2F SimpleLink Bluetooth low energy Wireless MCU, Texas Instruments, 2017.

    QR CODE