研究生: |
葉子維 Yeh, Tzu-Wei |
---|---|
論文名稱: |
模式參考適應型雙饋感應發電機組之控制器實現 Implementations of Model-Reference Adaptive Control of Doubly-Fed Induction Generators |
指導教授: |
朱家齊
Chu, Chia-Chi |
口試委員: |
楊宏澤
張偉能 馬肇聰 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 雙饋式感應發電機 、無感測器 、參考模型適應性系統 、反電動勢 、瞬時虛功 、即時控制平台 |
外文關鍵詞: | Doubly-Fed Induction Generators, Sensorless, MRAS, Back-emf, Instantaneous-reactive power, xPC system |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著天然能源日漸匱乏以及環境污染日益嚴重,風力發電正在全球高速發展,各國視之為解決溫室效應的良方。而雙饋式感應發電機由於其具有變速恆頻與高轉換效率等優點,使得其成為風力發電技術的重要發展方向。雙饋式感應發電機透過激磁控制策略,可以實現於轉速變化下的穩定運轉,以及發電機輸出的實功與虛功功率。同樣的,其建構的成本也納入考量,目前的技術大多依賴轉速感測器;因此無感測器控制為一節省成本的良方,且近似於系統基於轉速感測器作控制時的暫態表現。
因此本文將深入探討兩種參考模型適應性系統的無感測器理論,並應用於雙饋式感應發電機系統。
首先,敘述雙饋式感應發電機系統的架構與固態轉換特性;其次,分別建立電網側轉換器動態模型與轉子側轉換器動態模型,進而推導出電網側轉換器的直流鏈電壓控制與轉子側轉換器的實功功率控制以及虛功功率控制。接著本文提出兩種無感測器控制,分別為反電動勢模式參考適應型轉速估測器控制與瞬時虛功模式參考適應型轉速估測器控制,並以MATLAB/Simulink模擬兩控制法於DFIG系統。最後以一基於MATLAB/Simulink的xPC 系統來即時控制一套2.2kW的雙饋式感應發電機硬體平台,將反電動勢模式參考適應型轉速估測器控制利用於此,並以實測波形的呈現來證明其可行性。
With the situation of energy source exhaustion and environmental pollution, the wind energy generation is gaining more and more attention around the world. It is now recognized that many large farms will employ doubly fed induction generator (DFIG) variable speed wind turbines. Hence, some elementary sensor-based flux-oriented control strategies have been successfully implemented in current wind power industry practice. Also, it is very important to reduce cost. Sensorless control might be a good way to save the cost of sensor and provide similar satisfactory transient performance of sensor-based control.
The main theme of this thesis will study a model reference adaptive system (MRAS) for a speed sensorless control of the vector controlled DFIG system. The main contributions of this thesis can be summarized as follows:
First, conducting the Static characteristics of DFIGs and their operating capacity. Second, the dynamic model of grid side converter and rotor side converter will be constructed, respectively. According to those models, the dc-link control for grid side converter and the active/reactive control for rotor side converter can be shown. Third, we propose two sensorless controls, including the Back-emf model reference adaptive system control and the Instantaneous-reactive power model reference adaptive system control, are studied. Also, we simulate those two sensorless controls by Matlab/Simulink. Finally, a xPC system which is constructed by Matlab/Simulink control a 2.2 kW DFIG hardware platform in real time. The Back-emf model reference adaptive system control will be use in the DFIG system. We will show the measured waveforms to demonstrate the performances of the proposed sensorless controls.
[1] C. Schauder, “Adaptive speed identification for vector control of induction motors without rotational transducers,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1054-1061, Oct. 1992.
[2] S. Tamai et al., “Speed sensorless vector control of induction motor with model reference adaptive system,” in Proc. IEEE/IAS Annu. Meet., 1987, pp. 189-195.
[3] M. Beck and D. Naunin, “A new method for the calculation of the slip frequency for a sensorless speed control of a squirrel-cage induction motor,” in Rec. IEEE/PESC, 1985, pp. 678-683.
[4] U. Baader et al., “Direct self control of inverter-fed induction machine, A basis for speed control without speed-measurment,” in Proc. IEEE/IAS Annu. Meet., 1989, pp. 486-492.
[5] A. Fratta et al., “Vector control of induction motors without shaft transducer,” in Rec. IEEE/PESC , 1988, pp. 839-846.
[6] H. M. Kojabadi, L. Chang, and R. Doraiswami, “A MRAS-based adaptive pseudoreduces-order flux observer for sensorless induction motor drives,” IEEE Trans. Power Electron., vol. 20, no. 4, pp.930-938. Jun. 2005.
[7] R. Blasco-Giménez, G. Asher, M. Summer, and K. Bradley, “Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive,” Proc. IEE—Elect. Power Applicat., vol. 143, pp. 113–122, Mar. 1996.
[8] R. Blasco-Giménez, G. Asher, M. Summer, and K. Bradley, “Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 2: Online parameter tuning and dynamic performance studies,” Proc. IEE—Elect. Power Applicat., vol. 143, pp. 123–134, Mar. 1996.
[9] M.N. Marwali, A. Keyhani, “A comparative study of rotor flux based MRAS and back EMF based MRAS speed estimators for speed sensorless vector control of induction machines, in Proc. IEEE-IAS Annu. Meeting, pp. 160–166, 1997.
[10] G. Poddar and V. T. Ranganathan, “Sensorless field-oriented control for doubly-inverter-fed wound-rotor induction motor drive,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1089–1096, Oct. 2004.
[11] R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare, “MRAS observer for sensorless control of stand-alone doubly-fed induction generators,” IEEE Trans. Energy Conversion, vol. 20, no. 4, pp.710-718, Dec. 2005.
[12] R. Cardenas, R. Pena, J. Clare, G. Asher, and J. Proboste, “MRAS observers for sensorless control of doubly-fed induction generators,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1075-1084, May. 2008.
[13] R. S. Pena, R. Cardenas, J. Proboste, G. Asher, and J. Clare, “Sensorless control of a slip ring induction generator based on rotor current MRAS observer,” in Proc. 36th IEEE PESC, pp. 2508–2513, Jun.2005.
[14] R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare, “Rotor current based MRAS observer for doubly-fed induction machines,” Electron. Lett., vol. 40, no. 12, pp.769-772, Jun. 2004.
[15] D. G. Forchetti, G. O. Garcia, and M. I. Valla, “Adaptive observer for sensorless control of stand-alone doubly fed induction generator,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4174–4180, Oct. 2009.
[16] F. Z. Peng and T. Fukao, “Robust speed identification for speed-sensorless vector control of induction motors,” IEEE Trans. Ind. Appl., vol. 30, No. 5, Sep./Oct. 1994.
[17] K. Tungpimolrut, F. Z. Peng, and T. Fukao, “Robust vector control of induction motor without using stator and rotor circuit time constants,” IEEE Trans. Ind. Appl., vol. 30, No. 5, pp. 121-1246, Sep./Oct. 1994.
[18] M. Rashed and A. F. Stronach, “A stable back-emf MRAS-based sensorless low speed induction motor drive insensitive to stator resistance variation,” IEEE Proc. Elec. Power. Appl., 2004.
[19] Q. H. Wu and C. Shao, “A phase locked loop based model reference adaptive system for speed estimation of sensorless induction motor drives,” ACTA Auto. Sini., vol. 32, No. 5, Sep. 2006.
[20] F. Z. Peng, T. Fukao, and J. S. Lai “Low-speed performance of robust speed identification using instantaneous reactive power for tacholess vector control of induction motors,” in Proc. IEEE/IAS Annu. Meet., 1994, pp. 509-514.
[21] M. C. Ta, T. Uchida, and Y. Hori “MRAS based speed sensorless control for induction motor drives using instantaneous reactive power,” in Proc. IEEE-IECON, 2001, pp. 1417-1422.
[22] S. Maiti, C. Chakraborty, Y. Hori, and M. C. Ta, “Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power,” IEEE Trans. Ind. Appl., pp. 594-601, Fed. 2008.
[23] S. Maiti, C. Chakraborty, and S. Sengupta “Adaptive estimation of speed and rotor time constant for the vector controlled induction motor drive using reactive power,” in Proc. IEEE-IECON, 2007, pp. 286-291.
[24] H. M. Kojabadi, “Active power and MRAS based rotor resistance identification of an IM drive,” Simulat. Model. Practice Theory 17, Fed. 2009, pp. 376-389.
[25] 鄭劭鈞,適用於風力發電之無感測型雙饋式感應發電機組適應控制開發與實現,國立清華大學碩士論文,2010年。
[26] 洪嘉駿,雙饋式感應發電機轉子側電力轉換器控制技術開發與實現,國立清華大學碩士論文,2008年。
[27] 劉力源,適用於為形電網知可重製化強化電力潮流控制器雛型設計與實作,國立清華大學碩士論文,2010年。
[28] A. Yazdani and R. Iravani, “Voltage-sourced converters in power systems: Modeling, Control, and Applications,” 2010.
[29] M. Yamamoto and O. Motoyoshi, “Active and Reactive Power Control for Doubly-Fed Wound Rotor Induction Generator,” IEEE Trans. Power Electron., vol. 6, no. 4, Oct. 1991.
[30] R. Pena, J. C. Clare, and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IEEE Proc.-Electr. Power Appl., vol. 143, no. 3, May 1996.
[31] H. Akagi, and H. Sato, “Control and Performance of a Doubly-Fed Induction Machine Intended for a Flywheel Energy Storage System,” IEEE Trans. Power Electron., vol. 17, no. 1, Jan. 2002.
[32] S. Muller, M. Deicke, and R. W. De Doncker, “Doubly Fed Induction Generators Systems for Wind Turbines,” IEEE Ind. Applicat. Mag., pp. 26-33, May/June 2002.