研究生: |
許祐禎 Hsu, Yu-Chen |
---|---|
論文名稱: |
利用炔烴化合物在金催化下合成具有高官能化的有機分子 Gold-Catalyzed Synthesis of Highly Functionalized Organic Molecules from Alkyne Compounds |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
蔡易州
Tsai, Yi-Chou 彭之皓 Peng, Chi-How 侯敦仁 Hou, Duen-Ren 吳明忠 Wu, Ming-Jung |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 878 |
中文關鍵詞: | 金催化 、炔烴 、金碳烯 、環化 |
外文關鍵詞: | Gold Catalysis, Alkyne, Gold Carbene, Cyclization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一章節 :
第一章我們使用了α-亞氨基炔烴I-1與芳香醛I-2進行反應,在有氧氣環境下進行金催化反應先進行[4 + 2]環化反應形成六圓環的氧鎓類化合物I-I,之後該類化合物會受到水的攻擊,然後對關鍵中間體進行O2氧化來得到具有高比例Z型態的選擇性化合物I-3。
第二章節 :
第二章我們利用金催化劑先活化1,4-二炔-3-醇的基質II-1再與N-羥基苯胺基質II-2進行一種新的N,O-官能化,可以在反應中產生出高度官能化的吡咯衍生物II-3。在我們推測的機構中,N-羥基苯胺基質可以經過區域選擇性N攻擊來攻擊較多電子雲的炔烴,此反應路徑會形成不穩定的酮衍生物的硝酮分子,此分子經由分子內氧轉移與其束縛的炔反應來形成α-氧金碳烯此中間物II-I。在此篇研究成果中,我們成功利用此新合成方法來合成生物活性分子PDE4抑製劑。
第三章節 :
第三章介紹了金催化的N-炔丙基炔酰胺與蒽的環化反應可以通過兩種不同的機構進行,首先,第一種機構是在末端N-炔丙基炔基酰胺的情況下,生成的α-亞氨基金碳烯與鏈狀炔反應生成乙烯基陽離子之後再進行水解,水解的方法是使用對位甲苯磺酸進行反應最終生成吡咯並[2,3-b]喹啉衍生物。第二種機構是針對內部炔烴,其α-亞氨基金碳烯是透過烯基金碳烯來與束縛的炔烴反應,這兩種路徑最終都會產生4-酮-2-氨基吡咯衍生物,而我們的機構分析指出:對於末端乙酰胺,水是比蒽醌更好的親核試劑,而對於內部乙酰胺的反應性來說,水和蒽醌的反應性是相同的。
第四章節 :
第四章介紹了在使用5-羥基1,3-二炔-1-酰胺基質和8-甲基喹啉氧化物透過金催化氧化反應會進行兩種不同的途徑,當我們使用5-羥基1,3-二炔-1-酰胺基質的時候,會意外的發現C(3)區域選擇性,因此我們開始專注於5-羥基1,3-二炔-1-酰胺基質的C(3)氧化,因為我們觀察到相同的基質會在使用AuCl3來進行催化反應環化時得到2-氨基亞甲基呋喃-3(2H)-酮衍生物,而在使用CyJohnPhosAuCl/AgSbF6來進行催化反應環化的時候會得到2-氨基-4H-吡喃-4-酮衍生物,除此之外,在此篇文章中我們也進行了密度泛函理論計算以合理化對5-羥基1,3-二炔-1-酰胺的C(3)區域選擇性進行解釋。
Chapter I :
The first chapter describes the Gold-catalyzed aerobic oxidations of α-iminoalkynes I-1 with aryl aldehydes I-2 led to oxidative 1,3-hydroacyclation reactions, yielding high Z-selectivity. We postulate an initial [4+2]-annulation of α-iminoalkynes with aldehydes to form a six-membered oxonium species I-I that is attacked by water, followed by the O2 oxidation of a key intermediate.
Chapter II :
The second chapter shows the new N,O-functionalization of 1,4-diyn-3-ols II-1 with N-hydroxyanilines II-2 to yield highly functionalized pyrrole derivatives II-3. In a postulated mechanism, N-hydroxyaniline attacks the more electron-rich alkynes via regioselective N-attack to form unstable ketone-derived nitrones that react with their tethered alkynes via an intramolecular oxygen-transfer to form α-oxo gold carbenes II-I. This new method is applicable to a short synthesis of a bioactive molecule, a PDE4 inhibitor.
Chapter III :
The third chapter describes the Gold-catalyzed annulation of N-propargyl ynamides with anthranils can proceed by two distinct mechanisms. In the case of a terminal N-propargyl ynamide, its resulting α-imino gold carbene reacts with a tethered alkyne to generate a vinyl cation to enable hydrolysis, which ultimately yields a pyrrolo[2,3-b]quinoline derivative after treatment with p-toluenesulfonic acid. For an internal alkyne, its α-imino gold carbene reacts with a tethered alkyne via either a vinyl cation or an alkenylgold carbene; both paths ultimately lead to a 4-ketone-2-aminopyrrole derivative. Our mechanistic analysis indicates that water is a better nucleophile than anthranil for terminal ynamides, whereas water and anthranils are equally reactive for internal ynamides.
Chapter IV :
This work reports two distinct paths in catalytic oxidations of 1,3-diynamides with 8-methylquinoline oxide. A typical C(1) regioselectivity was observed for aryl-substituted 1,3-diyn-1-amides, whereas an unexpected C(3) regioselectivty occurred for 5-hydroxy1,3-diyn-1-amides. We focused on the C(3) oxidations of 5-hydroxy1,3-diyn-1-amides because we observed two oxidative cyclizations of the same substrates to yield 2-aminomethylenefuran-3(2H)-ones and 2-amino-4H-pyran-4-ones using AuCl3 and a cationic gold catalyst, respectively. Density functional theory calculations were performed to rationalize the C(3) regioselectivity on 5-hydroxy1,3-diyn-1-amides.
Chapter I :
[1]. For recent reviews on catalytic hydroacylation, see: a) J. C. Leung and M. J. Krische, Chem. Sci., 2012, 3, 2202-2209; b) M. C. Willis, Chem. Rev., 2010, 110, 725-748.
[2]. For rhodium-catalyzed hydroacylation, see selected examples: a) A. B. Chaplin, J. F. Hooper, A. S. Weller and M. C. Willis, J. Am. Chem. Soc., 2012, 134, 4885-4897; b) C. Matthias, S. L. Wason, B. Estepa, J. F. Hooper and M. C. Willis, Angew. Chem., Int. Ed., 2013, 52, 13280-13283; c) S. J. Poingdestre, J. D. Goodacre, A. S. Weller and M. C. Willis, Chem. Commun., 2012, 48, 6354-6356; d) P. Lenden, D. A. Entwistle and M. C. Willis, Angew. Chem. Int. Ed., 2011, 50, 10657-10660; e) K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 8078-8079; f) K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2002, 124, 10296-10297; g) K. Tanaka and G. C. Fu, Chem. Commun., 2002, 684-685.
[3]. For iridium-catalyzed hydroacylation, see: a) S. Hatanaka, Y. Obora and Y. Ishii, Chem. Eur. J., 2010, 16, 1883-1888.
[4]. Y. Obora, S. Hatanaka and Y. Ishii, Org. Lett., 2009, 11, 3510-3513.
[5]. For cobalt-catalyzed hydroacylation, see: a) C. P. Lenges and M. Brookhart, J. Am. Chem. Soc., 1997, 119, 3165-3166; b) C. P. Lenges, P. S. White and M. Brookhart, J. Am. Chem. Soc., 1998, 120, 6965-6979.
[6]. For ruthenium-catalyzed hydroacylation, see: a) H. Miura, K. Wada, S. Hosokawa and M. Inoue, Chem. Eur. J., 2013, 19, 861-864; b) R. L. Patman, M. R. Chaulagain, V. M. Williams and M. J. Krische, J. Am. Chem. Soc., 2009, 131, 2066-2067.
[7]. For nickel-catalyzed hydroacylation, see selected examples: a) F. Yang, T. Jin and Y. Yamamoto, Tetrahedron., 2012, 68, 5223-5228; b) Y. Miyazaki, Y. Yamada, Y. Nakao and T. Hiyama, Chem. Lett., 2012, 41, 298-300; c) Y. Nakao, H. Idei, K. S. Kanyiva and T. Hiyama, J. Am. Chem. Soc., 2009, 131, 5070-5071.
[8]. See selected examples: a) T. Ishikawa, T. Aikawa, S. Watanabe and S. Saito, Org. Lett., 2006, 8, 3881-3884; b) M. J. Fan, G. Q. Li and Y. M. Liang, Tetrahedron., 2006, 62, 6782-6791; c) R. K. Kawade, C. C. Tseng and R. S. Liu, Chem. Eur. J., 2014, 20, 13927-13931; d) P. Sharma and R. S. Liu, Chem. Eur. J., 2015, 21, 4590-4594; e) Z. H. Zhang, L. Yin and Y. M. Wang, Adv. Synth. Catal., 2006, 348, 184-190.
[9]. a) B. H. Lipshutz and B. Amorelli, J. Am. Chem. Soc., 2009, 131, 1396-1397; b) J. U. Jeong, X. Chen, A. Rahman, D. S. Yamashita and J. I. Luengo, Org. Lett., 2004, 6, 1013-1016; c) K. Paulvannan, J. B. Schwarz and J. R. Stille, Tetrahedron Lett., 1993, 34, 215-218; d) K. Paulvannan and J. R. Stille, J. Org. Chem., 1994, 59, 1613-1620.
[10]. For gold-catalyzed oxidations of alkynes using organic oxides, see: a) T. Wang, S. Shi, M. M. Hansmann, E. Rettenmeier, M. Rudolph and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2014, 126, 3789-3793; b) T. Wang, L. Huang, S. Shi, M. Rudolph and A. S. K. Hashmi, Chem. Eur. J., 2014, 20, 14868-14871; c) T. Wang, S. Shi, M. Rudolph and A. S. K. Hashmi, Adv. Syn. Catal., 2014, 356, 2337-2342; d) H. Chen and L. Zhang, Angew. Chem. Int. Ed., 2015, 54, 11775-11779; e) P. Nosel, S. Moghimi, C. Hendrich, M. Haupt, M. Rudolph, F. Rominger and A. S. K. Hashmi, Adv. Syn. Catal., 2014, 356, 3755-3760.
[11]. See selected examples: a) T. Ishikawa, T. Aikawa, S. Watanabe and S. Saito, Org. Lett., 2006, 8, 3881-3884; b) M. J. Fan, G. Q. Li and Y. M. Liang, Tetrahedron., 2006, 62, 6782-6791; c) R. K. Kawade, C. C. Tseng and R. S. Liu, Chem. Eur. J., 2014, 20, 13927-13931; d) P. Sharma and R. S. Liu, Chem. Eur. J., 2015, 21, 4590-4594; e) Z. H. Zhang, L. Yin and Y. M. Wang, Adv. Synth. Catal., 2006, 348, 184-190.
[12]. Gold-catalyzed [4+2]-annulations of α-oxo alkynes with alkenes, nitriles and carbonyl compounds could deliver stable annulation products, see: a) R. L. Sahani and R. S. Liu, Chem. Commun., 2016, 52, 7482-7485; b) S. N. Karad, W. K. Chung and R. S. Liu, Chem. Commun., 2015, 51, 13004-13007; c) S. N. Karad and R. S. Liu, Chem. Sci., 2015, 6, 5964-5968; d) D. B. Huple, S. Ghorpade and R. S. Liu, Adv. Syn. Catal., 2016, 358, 1348-1367.
[13]. α-Imino carboanions reacted with aldehydes to give C-alkylation products; see selected examples: a) F. E. Henoch, K. G. Hampton, and C. R. Hauser, J. Am. Chem. Soc., 1969, 91, 676–681; b) M. F. Lipton and R. H. Shapiro, J. Org. Chem., 1978, 43, 1409-1413; c) D. Lim and D. M. Coltart, Angew. Chem., Int. Ed., 2008, 47, 5207-5210; d) S. B. J. Kan, R. Matsubara, F. Berthiol and S. Kobayashi, Chem. Commun., 2008, 6354-6356; e) R. Matsubara, K. Masuda, J. Nakano and S. Kobayashi, Chem. Commun., 2010, 46, 8662-8664; f) R. Matsubara, F. Berthiol and S. Kobayashi, J. Am. Chem. Soc., 2008, 130, 1804-1805.
[14]. For gold-catalyzed oxidations of alkynes with O2, see selected examples: a) L. Huang, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 4808-4813; b) A. S. K. Hashmi, M. C. B. Jaimes, A. M. Schuster and F. Rominger, J. Org. Chem., 2012, 77, 6394-6408; c) Y. Liu, F. Song and S. Guo, J. Am. Chem. Soc., 2006, 128, 11332-11333; d) X. Jin, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed., 2014, 53, 455-458; e) Y. Shao, Z. Wu, C. Miao and L. Liu, J. Organomet. Chem., 2014, 767, 60-64.
[15]. T. Tang, X. D. Fei, Z. Y. Ge, Z. Chen, Y. M. Zhu and S. J. Ji, J. Org. Chem., 2013, 78, 3170-3175.
[16]. J. M. Tang, T. A, Liu and R. S. Liu, J. Org. Chem., 2008, 73, 8479-8483.
Chapter II :
[1]. Selected reviews: a) Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry toward Heterocyclic and Natural Products, ed. A. Padwa and W. H. Pearson, Wiley, New York, 2002; b) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887-2902; c) K. V. Gothelf and K. A. Jorgensen, Chem. Rev., 1998, 98, 863-910; d) F. Cardona and A. Goti, Angew. Chem., Int. Ed., 2005, 44, 7832-7835.
[2]. a) T. B. Nguyen, A. Martel, R. Dhai and G. Dujardin, Org. Lett., 2008, 10, 4493-4496; b) E. Winterfeldt, W. Krohn and H. Stracke, Chem. Ber., 1969, 102, 2346-2361; c) A. Pernet-Poil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze and P. Y. Chavant, Tetrahedron: Asymmetry, 2006, 17, 1969-1974; d) F. Cantagrel, S. Pinet, Y. Gimbert and P. Y. Chavant, Eur. J. Org. Chem., 2005, 2694-2701; e) J. Y. Pfeiffer and A. M. Beauchemin, J. Org. Chem., 2009, 74, 8381-8383.
[3]. Reviews for gold-catalyzed cycloaddition reactions: see: a) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180-3211; b) M. E. Muratore, A. Homs, C. Obradors and A. M. Echavarren, Chem. Asian J., 2014, 9, 3066-3082; c) F. Lopez and J. L. Mascarenas, Chem. Soc. Rev., 2014, 43, 2904-2915.
[4]. H. Liu, Y. Zhao, Z. Li, H. Jia, C. Zhang, Y. Xiao and H. Guo, RSC Adv., 2017, 7, 29515-29519.
[5]. K. B. Jensen, R. G. Hazell and K. A. Jørgenson, J. Org. Chem., 1999, 64, 2353-2360.
[6]. B. T. Worrell, J. A. Malik and V. V. Fokin, Science, 2013, 340, 457-460.
[7]. a) S. Santoro, R. Z. Liao, T. Marcelli, P. Hammar and F. Himo, J. Org. Chem., 2015, 80, 2649-2660; b) T. C. Malig, D. Yu and J. E. Hein, J. Am. Chem. Soc., 2018, 140, 9167-9173
[8]. a) Y. Wang, L. W. Ye and L. Zhang, Chem. Commun., 2011, 47, 7815-7817; b) Y. Wang, L. Liu and L. Zhang, Chem. Sci., 2013, 4, 739-746.
[9]. D. B. Huple, B. D. Mokar and R. S. Liu, Angew. Chem., Int. Ed., 2015, 54, 14924-14928.
[10]. B. D. Mokar, D. B. Huple and R. S. Liu, Angew. Chem., Int. Ed., 2016, 55, 11892-11896.
[11]. A. S. K. Raj, B. S. Kale, B. D. Mokar and R. S. Liu, Org. Lett., 2017, 19, 5340-5343.
[12]. Metal-catalyzed reactions of alkynes with aldehyde-derived nitrones, see: a) H. S. Yeom, Y. Lee, J. E. Lee and S. Shin, Org. Biomol. Chem., 2009, 7, 3733-4752; b) A. Mukherjee, R. B. Dateer, R. Chaudhari, S. Bhunia, S. N. Karad and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 15372-15375; c) S. Bhunia, C. J. Chang and R. S. Liu, Org. Lett., 2012, 14, 5522-5525.
[13]. Reviews for gold-catalyzed N, O-functionalizations of alkynes; see D. B. Huple, S. Ghorpade and R. S. Liu, Adv. Synth. Catal., 2016, 358, 1348-1367.
[14]. a) V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman and P. Sharma, RSC Adv., 2015, 5, 15233-15266; b) S. Thirumalarirajan, B. M. Pearce and A. Thompson, Chem. Commun., 2010, 46, 1797-1812; c) T. B. Kumar, C. Sumanth, S. Vaishaly, M. S. Rao, K. B. C. Sekhar, C. L. T. Meda, A. Kandale, D. Rambabu, G. R. Krishna, C. M. Reddy, K. S. Kumar, K. V. L. Parsa and M. Pal, Bioorg. Med. Chem., 2012, 22, 5639-5647; d) J. C. P. Reyes and D. Romo, Angew. Chem., Int. Ed., 2012, 51, 6870-6873; e) H. Fan, J. Peng, M. T. Hamann and J. F. Hu, Chem. Rev., 2008, 108, 264-287; f) D. S. Kim, Y. S. Seo and C. H. Jun, Org. Lett., 2015, 17, 3842-3845; g) M. Biava, G. C. Porretta, D. Deidda, R. Pompei, A. Tafi and F. Manetti, Bioorg. Med. Chem., 2004, 12, 1453-1458.
[15]. For gold-catalyzed aza-Nazarov cyclizations, see: a) S. K. Pawar, R. L. Sahani and R. S. Liu, Chem. Eur. J., 2015, 21, 10843-10850; b) R. L. Sahani and R. S. Liu, Angew. Chem., Int. Ed., 2017, 56, 1026-1030; c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L. W. Ye, Chem. Sci., 2015, 6, 1265-1271; d) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 794-797; e) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 12688-12692.
[16]. For gold-catalyzed intermolecular reactions of N-hydroxyamines with allenes, see: a) R. K. Kawade, P. H. Huang, S. N. Karad and R. S. Liu, Org. Biomol. Chem., 2014, 12,737-740; b) J. M. Chen, C. J. Chang, Y. J. Ke and R. S. Liu, J. Org. Chem., 2014, 79, 4306-4311.
[17]. For gold catalyzed reactions of 1,4-diyn-4-ol derivatives, see: T. Wang, S. Shi, M. M. Hansman, E. Rettenmeier, M. Rudolph and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2014, 53, 3715-3719.
[18]. a) F. G. Bordwell and W. Z. Liu, J. Am. Chem. Soc., 1996, 118, 8777-8781; b) S. Ung, A. Falguieres, A. Guy and C. Ferroud, Tetrahedron Letters., 2005, 46, 5913-5917; c) Y. Wang, L. Liu and L. Zhang, Chem. Sci., 2013, 4, 739-746.
[19]. K. Tanaka, T. Osaka, K. Noguchi and M. Hirano, Org. Lett., 2007, 9, 1307-1310.
[20]. D. Nishikawa, K. Hirano and M. Miura, J. Am. Chem. Soc., 2015, 137, 15620-15623.
Chapter III :
[1]. For reviews of α-oxo gold carbene, see a) L. Zhang, Acc. Chem. Res., 2014, 47, 877-888; b) H. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966-977; c) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677-698; d) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506-516; e) J. Xiao and X. Li, Angew. Chem. Int. Ed., 2011, 50, 7226-7236; f) Z. Zheng, Z. Wang, Y. Wang and L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4458; g) J. Schießl, P. M. Stein, J. Stirn, K. Emler, M. Rudolph, F. Rominger and A. S. K. Hashmi, Adv. Synth. Catal., 2019, 361, 725-738.
[2]. a) D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem. Int. Ed., 2011, 50, 6911-6914; b) D. Qian and J. Zhang, Chem. Commun., 2011, 47, 11152-11154; c) K. Wang and L. Zhang, Org. Chem. Front., 2014, 1, 34-38; d) K. Ji, Z. Zheng, Z. Wang and L. Zhang, Angew. Chem. Int. Ed., 2015, 54, 1245-1249; e) D. Qian, H. Hu, F. Liu, B. Tang, W. Ye, Y. Wang and J. Zhang, Angew. Chem. Int. Ed., 2014, 53, 13751-13755; f) K. B. Wang, R. Q. Ran, S. D. Xiu and C. Y. Li, Org. Lett., 2013, 15, 2374-2377.
[3]. L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc., 2010, 132, 3258-3259; b) L. Ye, W. He and L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550-8551; c) S. Bhunia, S. Ghorpade, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2012, 51, 2939-2942; d) L. Ye, W. He and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 3236-3239; e) G. Henrion, T. E. J. Chavas, X. L. Goff and F. Gagosz, Angew. Chem. Int. Ed., 2013, 52, 6277-6282; f) R. K. Kawade and R. S. Liu, Org. Lett., 2013, 15, 4094-4097; g) B. D. Mokar, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2016, 55, 11892-11896; h) G. Li and L. Zhang, Angew. Chem. Int. Ed., 2007, 46, 5156-5159; i) Z. Zheng and L. Zhang, Org. Chem. Front., 2015, 2, 1556-1560; j) Y. Wang, Z. Zheng and L. Zhang, J. Am. Chem. Soc., 2015, 137, 5316-5319; k) F. Sanchez-Cantalejo, J. D. Priest and P. W. Davice, Chem. Eur. J., 2018, 24, 17215-17219; l) L. Li, C. Shu, B. Zhou, Y. F. Yu, X. Y. Xiao and L. W. Ye, Chem. Sci., 2014, 5, 4057-4064; m) C. Shu, L. Li, X. Y. Xiao, Y. F. Yu, Y. F. Ping, J. M. Zhou and L. W. Ye, Chem. Commun., 2014, 50, 8689-8692; n) C. Shu, L. Li, Y. F. Yu, S. Jiang and L. W. Ye, Chem. Commun., 2014, 50, 2522-2525; o) F. Pan, S. Liu, C. Shu, R. K. Lin, Y. F. Yu, J. M. Zhou and L. W. Ye, Chem. Commun., 2014, 50, 10726-10729.
[4]. a) R. B. Dateer, K. Patil and R. S. Liu, Chem. Commun., 2012, 48, 7200-7202; b) D. B. Huple, S. Ghorpade and R. S. Liu, Chem. Eur. J., 2013, 19, 12965-12969; c) Y. Luo, K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc., 2012, 134, 17412-17415; d) W. He, C. Li and L. Zhang, J. Am. Chem. Soc., 2011, 133, 8482-8485; e) L. Wang, X. Xie and Y. Liu, Angew. Chem. Int. Ed., 2013, 52, 13302-13306; f) A. M. Jadhav, S. Bhunia, H. Y. Liao and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 1769- 1771; g) H. S. Yeom, J. E. Lee and S. Shin, Angew. Chem. Int. Ed., 2008, 47, 7040-7043.
[5]. a) B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo and L. Zhang, J. Am. Chem. Soc., 2013, 135, 8512-8524; b) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 4160-4161; c) X. Yao, T. Wang, X. Zhang, P. Wang, B. Zhang, J. Wei and Z. Zhang, Adv. Synth. Catal., 2016, 358, 1534-1539; d) K. Jia and L. Zhang, Adv. Synth. Catal., 2018, 360, 647-651; e) S. K. Pawar, C. D. Wang, S. Bhunia, A. M. Jadhav and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 7559-7563; f) A. S. K. Hashmi, T. Wang, S. Shi and M. J. Rudolph, Org. Chem., 2012, 77, 7761-7767; g) M. Xu, T. T. Ren and C. Y. Li, Org. Lett., 2012, 14, 4902-4905; h) S. Ghorpade, M. D. Su and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 4229-4234; i) C. W. Li, K. Patil, G. Y. Lin, S. M. A. Sohel, H. H. Hung and R. S. Liu, Angew. Chem. Int. Ed., 2010, 49, 9891-9894.
[6]. a) S. M. A. Sohel and R. S. Liu, Chem. Soc. Rev., 2009, 38, 2269-2281; b) A. Furstner and P. W. Davies, Angew. Chem. Int. Ed., 2007, 46, 3410-3449; c) N. D. Shapiro and F. D. Toste, Synlett., 2010, 5, 675-691.
[7]. R. Liu, G. N. W. McPherson, Z. Y. Yang, X. Zhou, W. Song, I. A. Guzei, X. Xu and W. Tang, J. Am. Chem. Soc., 2013, 135, 8201-8204.
[8]. P. Nosel, L. N. D. S. Comprido, T. Lauterbach, M. Rudolph, F. Rominger and A. S. K. Hashmi, J. Am. Chem. Soc., 2013, 135, 15662-15666.
[9]. a) W. Rao, M. J. Koh, D. Li and H. Chan, J. Am. Chem. Soc., 2013, 135, 7926-7932; b) W. Rao and P. W. H. Chao, Chem. Eur. J., 2014, 20, 713-718; c) J. Yan, G. L. Tay, C. Neo, B. R. Lee and P. W. H. Chao, Org. Lett., 2015, 17, 4176-4179.
[10]. a) C. Shu, Y. H. Wong, C. H. Shen, P. P. Ruan, X. Lu and L. W. Ye, Org. Lett., 2016, 18, 3254-3257; b) S. K. Pawar, R. L. Sahani and R. S. Liu, Chem. Eur. J., 2015, 21, 10843-10850; c) C. Shu, Y. H. Wang, B. Zhou, X. L. Li, Y. F. Ping, X. Lu and L. W. Ye, J. Am. Chem. Soc., 2015, 137, 9567-9570; d) W. B. Shen, Q. Sun, L. Li, X. Liu, B. Zhou, J. Z. Yan, X. Lu and L. W. Ye, Nat. Commun., 2017, 8, 1748; e) Z. Y. Yan, Y. Xiao and L. Zhang, Angew. Chem. Int. Ed., 2012, 51, 8624-8627; f) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 8358-8362; g) L. Zhu, Y. Yu, Z. Mao and X. Huang, Org. Lett., 2015, 17, 30-33; h) R. J. Reddy, M. P. B. Jones and P. W. Davices, Angew. Chem. Int. Ed., 2017, 56, 13310-13313; i) P. W. Davices, A. Cremonesi and L. Dumitrescu, Angew. Chem. Int. Ed., 2011, 50, 8931-8935; j) E. Chatzopoulou and P. W. Davices, Chem. Commun., 2013, 49, 8617-8619.
[11]. For platinum or gold catalyzed reactions of isoxazole with alkynes, see: a) W. B. Shen, X. Y. Xiao, Q. Sun, B. Zhou, X. Q. Zhu, J. Z. Yan, X. Lu and L. W. Ye, Angew. Chem. Int. Ed., 2017, 56, 605-609; b) R. L. Sahani and R. S. Liu, Angew. Chem. Int. Ed., 2017, 129, 1046-1050; c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L. W. Ye, Chem. Sci., 2015, 6, 1265-1271.
[12]. For gold catalyzed reactions of anthranil with alkynes, see: a) H. Jin, L. Huang, J. Xie, M. Rudolpb, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797; b) M. S. H. Jin, M. S. B. Tian, M. S. X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692; c) R. D. Kardile, B. S. Kale, P. Sharma and R. S. Liu, Org. Lett., 2018, 20, 3806-3809; d) H. C. Hsieh, K. C. Tan, A. S. K. Raj and R. S. Liu, Chem. Commun., 2019, 55, 1979-1982; e) R. S. Liu, M. Skaria, S. A. More, M. J. Cheng and T. C. Kuo, Chem. Eur. J., 2019, 26, 3600-3608; f) Z. Zheng, H. Jin, K. Sekine, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2018, 57, 6935-6939; g) Z. Zeng, H. Jin, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2018, 57, 16549-16553; h) M. H. Tsai, C. Y. Wang, A. S. K. Raj and R. S. Liu, Chem. Commun., 2018, 54, 10866-10869; i) M. D. Patil and R. S. Liu, Org. Biomol. Chem., 2019, 17, 4452-4455; j) L. Song, X. Tian, M. Rudolph, F. Rominger and A. S. K. Hashmi, Chem. Commun., 2019, 55, 9007-9010; k) M. Skaria, P. Sharma and R. S. Liu, Org. Lett., 2019, 21, 2876-2879; l) R. R. Sing, M. Skaria, L. Y. Chen, M. J. Cheng and R. S. Liu, Chem. Sci., 2019, 10, 1201-1206; m) R. L. Sahani and R. S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736-12740.
[13]. a) J. R. Manning and H. M. L. Davies, Tetrahedron., 2008, 64, 6901-6908; b) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602-8603; c) B. D. Mokar, P. D. Jadhav, Y. B. Pandit and R. S. Liu, Chem Sci., 2018, 9, 4488-4492.
[14]. a) D. Wang, J. Hu, J. Zhao, M. Shen, Y. Wang and P. Yu, Tetrahedron., 2018, 74, 4100-4110; b) K. Chen, X. Y. Tang and M. Shi, Chem. Commun., 2016, 52, 1967-1970; c) H. Zhao, Y. Xing, P. Lu and Y. Wang, Chem. Eur. J., 2016, 22, 15144-15150; d) B. D. Lee, Z. Li, K. J. French, Y. Zhuang, Z. Xia and C. D. Smith, J. Med. Chem., 2004, 47, 1413-1422; e) L. Fan, M. Liu, Y. Ye and G. Yin, Org. Lett., 2017, 19, 186-189; f) P. T. Parvatkar and M. S. Majik, RSC Adv., 2014, 4, 22481-22486; g) C. Challa, J. Ravindran, M. M. Konai, S. Varughese, J. Jacb, B. S. D. Kumar, J. Haldar and R. S. Lankalapalli, ACS Omega., 2017, 2, 5187-5195.
[15]. Gold and rhodium carbenes have high reactivity towards anthranils or isoxazoles; see ref. [12c], [12l] and selected examples: a) B. D. Mokar, P. D. Jadhav, Y. B. Pandit and R. S. Liu, Chem. Sci., 2018, 9, 4488-4492; b) J. R. Manning and H. M. L. Davices, Tetrahedron., 2008, 64, 6901-6908; c) J. R. Manning and H. M. L. Davices, J. Am. Chem. Soc., 2008, 130, 8602-8603.
[16]. X. Nie, G. Wang, J. Org. Chem., 2006, 71, 4734-4741.
[17]. a) compound III-1h and III-6a : R. Liu, G. N. Winston-McPherson, Z. Y. Yang, X. Zhou, W. Song, L. A. Guzei, X. Xu and W. Tang, J. Am. Chem. Soc., 2013, 135, 8201-8204; b) B. DeBoef, W. R. Counts and S. R. Gilbertson, J. Org. Chem., 2007, 72, 799-804.
[18]. a) R. L. Sahani and R. S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736-12740; b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692; c) H. Jin, L. Huang, J. Xie, M.Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797; d) J. Chauhan and S. Fletcher, Tetrahedron Lett., 2012, 53, 4951-4954.
[19]. a) compound III-6c : N. Ghosh, S. Nayak and A. K. Sahoo, Chem. Eur. J., 2013, 19, 9428-9433; b) compound III-6d : B. Prabagar, S. Nayak, R. Prasad and A. K. Sahoo, Org. Lett., 2016, 18, 3066-3069.
Chapter IV :
[1]. For reviews of α-oxo gold carbine, see: a) L. Zhang. Acc. Chem. Res., 2014, 47, 877-888; b) H. S. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966-977; c) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677-698; d) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506-516; e) J. Xiao and X. Li, Angew. Chem. Int. Ed., 2011, 50, 7226-7236.
[2]. a) A. M. Jadhav, S. Bhunia, H. Y. Liao and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 1769-1771; b) D. B. Huple, S. Ghorpade and R. S. Liu, Chem. Eur. J., 2013, 19, 12965-12969; c) Y. Luo, K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc., 2012, 134, 17412-17415; d) W. He, C. Li and L. Zhang, J. Am. Chem. Soc., 2011, 133, 8482-8485; e) H. S. Yeom, J. E. Lee and S. Shin, Angew. Chem. Int. Ed., 2008, 47, 7040-7043; f) L. Wang, X. Xie and Y. Liu, Angew. Chem. Int. Ed., 2013, 52, 13302-13306.
[3]. a) L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc., 2010, 132, 3258-3259; b) L. Ye, W. He and L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550-8551; c) S. Bhunia, S. Ghorpade, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2012, 51, 2939-2942; d) L. Ye, W. He and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 3236-3239; e) G. Henrion, T. E. J. Chavas, X. L. Goff and F. Gagosz, Angew. Chem. Int. Ed., 2013, 52, 6277-6282; f) R. K. Kawade and R. S. Liu, Org. Lett., 2013, 15, 4094-4097; g) B. D. Mokar, D. B. Huple and R. S. Liu, Angew. Chem. Int. Ed., 2016, 55, 11892-11896; h) G. Li and L. Zhang, Angew. Chem. Int. Ed., 2007, 46, 5156-5159; i) Z. Zheng and L. Zhang, Org. Chem. Front., 2015, 2, 1556-1560.
[4]. a) D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem. Int. Ed., 2011, 50, 6911-6914; b) D. Qian and J. Zhang, Chem. Commun., 2011, 47, 11152-11154; c) K. Ji and L. Zhang, Org. Chem. Front., 2014, 1, 34-38; d) K. Ji, Z. Zheng, Z. Wang and L. Zhang, Angew. Chem. Int. Ed., 2015, 54, 1245-1249; e) D. Qian, H. Hu, F. Liu, B. Tang, W. Ye, Y. Wang and J. Zhang, Angew. Chem. Int. Ed., 2014, 53, 13751-13755; f) K. B. Wang, R. Q. Ran, S. D. Xiu and C. Y. Li, Org. Lett., 2013, 15, 2374-2377.
[5]. a) R. L. Sahani, M. D. Patil, S. B. Wagh and R. S. Liu, Angew. Chem. Int. Ed., 2018, 57, 14878-14882; b) R. L. Sahani and R. S. Liu, ACS Catal., 2019, 9, 5890-5896; c) H. Wei, M. Bao, K. Dong, L. Qiu, B. Wu, W. Hu and X. Xu, Angew. Chem. Int. Ed., 2018, 57, 17200-17204; d) Z. Yu, H. Qiu, L. Liu and J. Zhang, Chem. Commun., 2016, 52, 2257-2260; e) B. Ma, Z. Wu, B. Huang, L. Liu and J. Zhang, Chem. Commun., 2016, 52, 9351-9354; f) S. B. Wagh, P. Sharma, M. D. Patil and R. S. Liu, Org. Chem. Front., 2019, 6, 226-230; g) S. B. Wagh, R. R. Singh, R. L. Sahani and R. S. Liu, Org. Lett., 2019, 21, 2755-2758.
[6]. a) P. Sharma, R. R. Singh, S. S. Giri, L. Y. Chen, M. J. Cheng and R. S. Liu, Org. Lett., 2019, 21, 5475-5479; b) Y. Zheng, J. Zhang, X. Cheng, X. Xu and L. Zhang, Angew. Chem. Int. Ed., 2019, 58, 5241-5245.
[7]. B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo and L. Zhang, J. Am. Chem. Soc., 2013, 135, 8512-8524; b) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 4160-4161; c) X. Yao, T. Wang, X. Zhang, P. Wang, B. Zhang, J. Wei and Z. Zhang, Adv. Synth. Catal., 2016, 358, 1534-1539; d) K. Ji and L. Zhang, Adv. Synth. Catal., 2018, 360, 647-651; e) S. K. Pawar, C. D. Wang, S. Bhunia, A. M. Jadhav and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 7559-7563; f) A. S. K. Hashmi, T. Wang, S. Shi and M. Rudolph, J. Org. Chem., 2012, 77, 7761-7767; g) M. Xu, T. T. Ren and C. Y. Li, Org. Lett., 2012, 14, 4902-4905; h) S. Ghorpade, M. D. Su and R. S. Liu, Angew. Chem. Int. Ed., 2013, 52, 4229-4234; i) C. W. Li, K. Pati, G. Y. Lin, S. M. A. Sohel, H. H. Hung and R. S. Liu, Angew. Chem. Int. Ed., 2010, 49, 9891-9894.
[8]. G. Evano, A. Coste and K. Jouvin, Angew. Chem. Int. Ed., 2010, 49, 2840-2859.
[9]. For recent reviews on the chemistry of ynamides, see: a) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064-5106; b) G. Evano, K. Jouvin and A. Coste, Synthesis, 2013, 45, 17-26; c) X. N. Wang, H. S. Yeom, L. C. Fang, S. He, Z. X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560-578.
[10]. For recent reviews on ynamide reactivity, see: a) F. Pan, X. L. Li, X. M. Chen, C. Shu, P. P. Ruan, C. H. Shen, X. Lu and L. W. Ye, ACS Catal., 2016, 6, 6055-6062; b) F. Pan, C. Shu and L. W. Ye, Org. Biomol. Chem., 2016, 14, 9456-9465; c) G. Evano, C. Theunissen and M. Lecomte, Aldrichimica Acta., 2015, 48, 59-70; d) X. N. Wang, H. S. Yeom, L. C. Fang, S. He, Z. X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560-578; e) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064-5106; f) G. Evano, A. Coste and K. Jouvin, Angew. Chem. Int. Ed., 2010, 49, 2840-2859.
[11]. a) K. C. M. Kurtz, R. P. Hsung and Y. Zhang, Org. Lett., 2006, 8, 231-234; b) H. Li, R. P. Hsung, K. A. DeKorver and Y. Wei, Org. Lett., 2010, 12, 3780-3783.
[12]. S. Kramer, K. Dooleweerdt, A. T. Lindhardt, M. Rottlander and T. Skrydstrup, Org. Lett., 2009, 11, 4208-4211.
[13]. L. Li, B. Zhou, Y. H. Wang, C. Shu, Y. F. Pan, X. Lu and L. W. Ye, Angew. Chem. Int. Ed., 2015, 54, 8245-8249.
[14]. N. Ghosh, S. Nayak and A. K. Sahoo, Chem. Eur. J., 2013, 19, 9428-9433.
[15]. a) F. Pan, C. Shu and L. W. Ye, Org. Biomol. Chem., 2016, 14, 9456-9465; b) C. M. Wang, L. J. Qi, Q. Sun, B. Zhou, Z. X. Zhang, Z. F. Shi, S. C. Lin, X. Lu, L. Gong and L. W. Ye, Green Chem., 2018, 20, 3271-3278; c) F. Pan, S. Liu, C. Shu, R. K. Lin, Y. F. Yu, J. M. Zhou and L. W. Ye, Chem. Commun., 2014, 50, 10726-10729; d) Y. C. Hsu, S. A. Hsieh and R. S. Liu, Chem. Eur. J., 2019, 25, 5288-5297; e) Q. Zhao, D. F. L. Rayo, D. Campeau, M. Daenen and F. Gagosz, Angew. Chem. Int. Ed., 2018, 57, 13603-13607; f) Y. Tokimizu, M. Wieteck, M. Rudolph, S. Oishi, N. Fujii, A. S. K. Hashmi and H. Ohno, Org. Lett., 2015, 17, 604-607.
[16]. N. Zheng, Y. Y. Chang, L. J. Zhang, J. X. Gong and Z. Yang, Chem. Asian. J., 2016, 11, 371-375.
[17]. J. Kim, Y. Ohk, S. H. Park, Y. Jung and S. Chang, Chem. Asian J., 2011, 6, 2040-2047.
[18]. C. Shu, Y. H. Wang, B. Zhou, X. L. Li, Y. F. Ping, X. Lu and L. W. Ye, J. Am. Chem. Soc., 2015, 137, 9567-9570.
[19]. For gold-catalyzed reactions of 1,3-diyn-1-amides or 1,3-diynes, see: a) J. Liu, P. Chakraborty, H. Zhang, L. Zhong, Z. X. Wang and X. Huang, ACS Catal., 2019, 9, 2610-2617; b) J. Matsuoka, Y. Matsuda, Y. Kawada, S. Oishi and H. Ohno, Angew. Chem. Int. Ed., 2017, 56, 7444-7448; c) M. Taguchi, Y. Tokimizu, S. Oishi, N. Fujii and H. Ohno, Org. Lett., 2015, 17, 6250-6253; d) P. P. Sharp, M. G. Banwell, J. Renner, K. Lohmann and A. C. Willis, Org. Lett., 2013, 15, 2616-2619; e) S. Kramer, J. L. H. Madsen, M. Rottlander and T. Skrydstrup, Org. Lett., 2010, 12, 2758-2761.
[20]. For the roles of the ligand and counter ion in the deactivation of the reaction, see: a) M. Kumar, J. Jasinski, G. B. Hammond and B. Xu, Chem. Eur. J., 2014, 20, 3113-3119; b) N. Mezailles, L. Richard and F. Gagosz, Org. Lett., 2005, 7, 4133-4136; c) L. Biasiolo, A. D. Zotto and D. Zuccaccia, Organometallics, 2015, 34, 1759-1765; d) P. Perez-Galan, N. Delpont, E. Herrero-Gomez, F. Maseras and A. M. Echavarren, Chem. Eur. J., 2010, 16, 5324-5332; e) M. Kumar, G. B. Hammond and B. Xu, Org. Lett., 2014, 16, 3452-3455; f) N. Salvi, L. Belpassi, D. Zuccaccia, F. Tarantelli and A. Macchioni, J. Organomet. Chem., 2010, 695, 2679-2686; g) G. Ciancaleoni, L. Belpassi, F. Tarantelli, D. Zuccaccia and A. Macchioni, Dalton Trans., 2013, 42, 4122-4131.
[21]. A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R. S. Liu, J. Am. Chem. Soc., 2011, 133, 15372-15375.
[22]. For 1,3-migrations of metal alkynylcarbenes, see the review: D. Lee and M. Kim, Org. Biomol. Chem., 2007, 5, 3418-3427.
[23]. X. Nie and G. Wang, J. Org. Chem., 2006, 71, 4734-4741.
[24]. a) A. Hentz, P. Retailleau, V. Gandon, K. Cariou and R. H. Dodd, Angew. Chem. Int. Ed., 2014, 53, 8333-8337. b) Y. C. Hsu, S. A. Hsieh and R. S. Liu, Chem. Eur. J., 2019, 25, 5288-5297.
[25]. a) Y. Tang, L. Shen, B. T. Dellaria and R. P. Hsung, Tetrahedron Lett., 2008, 49, 6404-6409. b) Y. Gao, G. Wu. Q. Zhou and J. Wang, Angew. Chem. Int. Ed., 2018, 57, 2716-2720.
[26]. I. Talbi, C. Alayrac, J. Lohier, S. Touil and B. Witulski, Org. Lett., 2016, 18, 2656-2659.