研究生: |
許婉寗 Hsu, Wan-Ning. |
---|---|
論文名稱: |
探討虛擬實驗對國中七年級學生在演化學習成就與概念理解的影響 The effects of virtual manipulatives on 7th grade students’ science achievement and conceptual understanding of evolution |
指導教授: |
王姿陵
Wang, Tzu-Ling. |
口試委員: |
盧秀琴
邱富源 |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 演化 、虛擬實驗 、另有概念 |
外文關鍵詞: | evolution, virtual experiment, alternative conceptions |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在探討虛擬實驗對國中七年級學生在演化學習成就與概念理解的影響。
本研究採準實驗研究設計,參與的樣本為一所公立國中七年級四個班級的學生,共計85人。參與的四個班級分別隨機選派兩個班為實驗組 (虛擬實驗教學) 以及兩個班為對照組 (一般教學)。研究工具包括演化成就測驗及演化二階診斷測驗。資料分析採用描述統計 (Descriptive statistics)、獨立樣本單因子共變數分析 (one-way ANCOVA)、Pearson積差相關。
本研究重要發現如下:
一、虛擬實驗與一般教學對學生在演化學習成就沒有顯著差異。
二、虛擬實驗對學生在演化機制中「個體差異」的概念理解提升效果最好;而「演化原因」以及演化機制中「適者生存」的概念,在教學後仍存有較多的另有概念。
三、虛擬實驗與一般教學的學生在「演化」學習成就與概念理解的表現皆呈現顯著正相關,也就是說學生的學習成就越高,概念理解越好。
The purpose of this study was to investigate the effects of virtual manipulatives on 7th grade students’ science achievement and conceptual understanding of evolution.
A quasi - experimental design was employed in this study. The participants were 85 seventh grade students from four science classes in a junior high school. Of the four science classes, two were assigned to the experimental group (virtual manipulatives), and the other two were assigned to the control group. Two instruments, the Evolution Achievement Test and the Two-Tier Diagnostic Test were used to assess students’ achievement and conceptual understanding of evolution. Data were analyzed by using descriptive statistics, independent one-way ANCOVA, and Pearson product-moment correlation.
The major findings of this study are as follows:
1.There was no significant difference between the two groups in students’ science achievement.
2.The use of virtual manipulatives has been shown to increase students’ understanding of concepts in the “differences among individuals”. The results also reveal that many of the students have alternative conceptions about the “reasons of evolution” and "survival of the fittest" after the experimental instruction.
3.Students’ science achievement are positively correlated with their conceptual understanding of evolution in both experimental and control groups.
一.中文部分
王士文(2009)。探究不同電腦模擬使用情境對概念學習的影響:以七年級遺傳單元
為例(碩士論文)。取自
http://handle.ncl.edu.tw/11296/ndltd/02903855654764384171
王吟微(2016)。以生物模擬實驗執行科學實務對七年級學生之學習影響(碩士論
文)。 取自
http://handle.ncl.edu.tw/11296/ndltd/90958066514940207713
江武雄(1984)。國民中學化學科教師教學困難及問題之調查研究。國科會報告(編
號:NSC73-0111-S018-04),未出版。
辛怡瑩、邱美虹(2012)。以概念演化樹探討跨年級學生演化概念之發展。科學教育
學刊,18,131-153。
吳明隆 (2007)。SPSS操作與應用-變異數分析實務。台北市:五南。
林英杰(2004)。應用二段式診斷工具探究國中二年級學生對生物恆定性的了解(未
出版之碩士論文)。國立嘉義大學科學教育研究所,嘉義市。
林佳儀(2007)。5E學習環教學模式對國一學生學習演化單元概念影響之研究(未出
版之碩士論文)。高雄師範大學科學教育研究所,高雄市。
孫光天、林勇成(2003)。網路虛擬實驗室融入五年級自然領域教學之研究。南師學
報:數理與科學類,37 (2),33-56。
茬家續 (2007)。高一學生生物演化概念分析與概念改變教學之研究(未出版碩士
論文)。國立台灣師範大學科學教育研究所,台北市。
郭生玉(1999)。心理與教育測驗。台北市:精華。
陳英佳(2010)。互動式電子白板虛擬實驗教學對國中生學習原子與分子之自我效能
及概念理解的影響(碩士論文)。取自
http://handle.ncl.edu.tw/11296/ndltd/12311714963686477916
陳藍萍(2004)。高一學生生物演化概念之研究(未出版碩士論文)。國立台灣師範
大學科學教育研究所,台北市。
曾雅君(2016)。國中生物教師施行論證式探究教學之實務知識呈現及學生學習成效
之研究-以生命的演化為例(碩士論文)。取自
http://handle.ncl.edu.tw/11296/ndltd/87150887968543269338
曾嬿霖(2002)。發展兩段式診斷測驗探討國中學生「演化」之概念(未出版碩士論
文)。國立高雄師範大學科學教育研究所,高雄市。
陽季吟(2007)。探討電腦模擬實驗和動手操作實驗對概念學習之影響-以八年級
「透鏡成像」單元為例(碩士論文)。取自
http://handle.ncl.edu.tw/11296/ndltd/83907405883491828911
湯偉君(2008)。以解釋本質探討中學演化論之教科書內容與教學(未出版博士論
文)。國立臺灣師範大學,臺北市。
楊坤原、張賴妙理 (2004)。發展和應用二段式診斷工具來偵測國中一年級學生之遺
傳學另有概念。科學教育學刊,12(1),107-131。
熊召弟(1991)。科學實驗活動之「學習」探討。國民教育,31 (11),2-5。
劉燿誠(2008)。應用二段式概念診斷測驗探究中學生生物恆定性之另有概念(碩士
論文)。 取自
http://handle.ncl.edu.tw/11296/ndltd/25261457087925908424
蔡錕承、張欣怡(2011)。結合實物與虛擬實驗促進八年級學生「溫度與熱」知識整
合、實驗能力語學習策略之研究。科學教育學刊,19 (5),435-459。
薛閎仁(2015)。於WISE平臺上進行以5E學習環設計之演化單元教材對學生學習成就
與學習動機的影響(碩士論文)。取自
http://handle.ncl.edu.tw/11296/ndltd/68331633645271064647
蘇暐珍(2009)。線上模擬實驗對高中生對科學的態度之影響(碩士論文)。取自
http://handle.ncl.edu.tw/11296/ndltd/87966859467683850022
二.英文部分
Abraham, J. K., Meir, E., Perry, J., Herron, J. C., Maruca, S., &
Stal, D. (2009). Addressing undergraduate student misconceptions
about natural selection with an interactive simulated laboratory.
Evolution: Education and Outreach, 2 (3), 393-404.
Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of
natural selection and its role in evolution. Journal of Research
In Science Teaching, 27 (5), 415-427.
Bloom, B. S. (Ed.) (1954). Taxonomy of educational objectives.
Handbook I: Cognitive domain. New York: Longman
Brumby, M. N. (1984). Misconceptions about the concept of natural
selection by medical biology students. Science Education, 68 (4),
493-503.
Campbell, N. A., & Reece, J. B. (2002). Biology. San Francisco, CA:
Benjamin Cummings.
Church, R., & Hand, S. (1992). Industrial melanism in moths: an
interactive computer simulation to demonstrate evolutionary
theory. Journal of Biological Education, 26 (1), 34-36.
Clough, E., & Wood-Robinson, C. (1985). How secondary students
interpret instances of biological adaptation. Journal of
Biological Education, 19 (2), 125-130.
de Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery
learning with computer simulations of conceptual domains. Review
of Educational Research, 68 (2), 179-201.
de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and
virtual laboratories in science and engineering education.
Science, 340 (6130), 305-308.
Deadman, J. A., & Kelly, P. J. (1978). What do secondary school boys
understand about evolution and heredity before they are taught the
topics? Journal of Biological Education, 12 (1) , 7-15.
Demastes, S. S., Good, R. G., & Peebles, P. (1995). Students’
conceptual ecologies and the process of conceptual change in
evolution. Science Education, 79 (6), 637-666.
Ferrari, M., & Chi, M. T. (1998). The nature of naive explanations
of natural selection. International Journal of Science Education,
20 (10), 1231-1256.
Field, A. (2009). Discovering statistics using SPSS. London, Sage
Publications.
Guimarães, E., Maffeis, A., Pereira, J., Russo, B., Cardozo, E.,
Bergerman, M., & Magalhães, M. F. (2003). REAL: A virtual
laboratory for mobile robot experiments. IEEE Transactions on
Education, 46 (1), 37-42.
Halldén, O. (1988). The evolution of the species: pupil perspectives
and school perspectives. International Journal of Science
Education, 10 (5), 541-552.
Herga, N. R., Grmek, M. I., & Dinevski, D. (2014). Virtual
laboratory as an element of visualization when teaching chemical
contents in science class. The Turkish Online Journal of
Educational Technology, 13 (4).
Hokayem, H., & BouJaoude, S. (2008). College students’ perceptions
of the theory of evolution. Journal of Research in Science
Teaching, 45 (4), 395-419.
Infanti, L. M., & Wiles, J. R. (2014). “Evo in the News”: A
pedagogical tool to enhance students' perceptions of the relevance
of evolutionary biology. Bioscene: Journal of College Biology
Teaching 40(2), 9-14.
Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of
students’ conceptual understanding of electric circuits in
simulation only and simulation‐laboratory contexts. Journal of
Research in Science Teaching, 48 (1), 71-93.
Jensen, M. S., & Finley, F. N. (1996). Changes in students’
understanding of evolution resulting from different curricular and
instructional strategies. Journal of Research in Science Teaching,
33 (8), 879-900.
Kampourakis, K., & Zogza, V. (2007). Students’ preconceptions about
evolution: How accurate is the characterization as “Lamarckian”
when considering the history of evolutionary thought? Science &
Education, 16 (3), 393-422.
Kampourakis, K., & Zogza, V. (2008). Students’ intuitive
explanations of the causes of homologies and adaptations. Science
& Education, 17 (1), 27-47.
Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The
relative effectiveness of physical versus virtual materials in an
engineering design project by middle school children. Journal of
Research in Science Teaching, 44 (1), 183-203.
Kukkonen, J. E., Kärkkäinen, S., Dillon, P., & Keinonen, T. (2014).
The effects of scaffolded simulation-based inquiry learning on
fifth-graders’ representations of the greenhouse effect.
International Journal of Science Education, 36 (3), 406-424.
Morrison, J. A., & Lederman, N. G. (2003). Science teachers’
diagnosis and understanding of students’ preconceptions. Science
Education, 87 (6), 849-867.
National Research Council. (2011). Learning science through computer
games and simulations. Washington, DC: The National Aademies
Press.
Nehm, R. H., & Reilly, L. (2007). Biology majors’ knowledge and
misconceptions of natural selection. BioScience, 57 (3), 263-272.
Nelson, C. E. (2008). Teaching evolution (and all of biology) more
effectively: strategies for engagement, critical reasoning, and
confronting misconceptions. Integrative and Comparative Biology,
48 (2), 213-225.
Novak, J. D. (2002). Meaningful learning: The essential factor for
conceptual change in limited or inappropriate propositional
hierarchies leading to empowerment of learners. Science Education,
86 (4), 548–571. doi:10.1002/sce.10032
Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and
virtual manipulatives: An effort to improve students’ conceptual
understanding through science laboratory experimentation. Science
Education, 96 (1), 21-47.
Özmen, H., Demircioğlu, H., & Demircioğlu, G. (2009). The effects of
conceptual change texts accompanied with animations on overcoming
11th grade students’ alternative conceptions of chemical bonding.
Computers & Education, 52(3), 681-695.
Pennock, R. T. (2007). Learning evolution and the nature of
science using evolutionary computing and artificial life. McGill
Journal of Education, 42 (2), 211-224.
Samarapungavan, A., & Wiers, R. W. (1997). Children’s thoughts on
the origin of species: A study of explanatory coherence. Cognitive
Science, 21 (2), 147-177.
Settlage, J. (1994). Conceptions of natural selection: a snapshot of
the sense‐making process. Journal of Research in Science Teaching,
31 (5), 449-457.
Soderberg, P., & Price, F. (2003). An examination of problem-based
teaching and learning in population genetics and evolution using
EVOLVE, a computer simulation. International Journal of Science
Education, 25 (1), 35-55.
Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft:
Comparing the influence of physical and virtual instructional
materials on elementary school students’ ability to design
experiments. Cognition and Instruction, 21 (2), 149-173.
Urban-Woldron, H. (2009). Interactive simulations for the effective
learning of physics. Journal of Computers in Mathematics and
Science Teaching, 28 (2), 163.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on
alternative conceptions in science. Handbook of Research on
Science Teaching and Learning, 177, 210.
Wescott, D. J., & Cunningham, D. L. (2005). Recognizing student
misconceptions about science and evolution. MountainRise, 2 (2).
Whittier, L. E., & Robinson, M. (2007). Teaching evolution to non-
English proficient students by using Lego robotics. American
Secondary Education, 19-28.
Zacharia, Z. C. (2007). Comparing and combining real and virtual
experimentation: an effort to enhance students’ conceptual
understanding of electric circuits. Journal of Computer Assisted
Learning, 23 (2), 120-132.
Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects
of experimenting with physical and virtual manipulatives on
students’ conceptual understanding in heat and temperature.
Journal of Research in Science Teaching, 45 (9), 1021-1035.
Zurita, A. R. (2016). EvoluZion: a computer simulator for teaching
genetic and evolutionary concepts. Journal of Biological
Education, 1-11.