簡易檢索 / 詳目顯示

研究生: 曾冠維
Tseng, Kuan-Wei.
論文名稱: 合成多孔狀的鍺磷化合物用於高效能的鋰離子電池及鈉離子電池
Synthesis of Mesoporous Germanium Phosphide for High Performance Lithium-Ion Batteries and Sodium-Ion Batteries
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 曾院介
Tseng, Yuan-Chieh
袁芳偉
Yuan, Fang-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 25
中文關鍵詞: 電池陽極材料一步反應鍺化合物磷化合物介孔洞材料
外文關鍵詞: batteries, anode materials, one step reaction, mesoporous, germanium based, phosphorus based
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以簡易的一步合成法,成功製作出多孔的磷化鍺化合物微米球且過程中無需犧牲劑亦可獲得孔徑均勻的多孔性材料。實驗中發現常見的短碳鏈有機溶劑可作為穩定劑,如:甲苯、正己烷、苯,透過實驗參數的調整,奈米粒子能夠組裝成為具有高比例介孔洞的微米球。具有高孔隙度的材料在能源儲存上(如:離子電池)有許多優異的特性,例如:能夠縮短能量載子(鋰離子和鈉離子)的擴散距離進而提升充放電速率、提供足夠的緩衝空間和奈米等級的顆粒與孔徑。在電化學的測試下,多孔的磷化鍺化合物微米球展現了傑出的電化學特性,與現有文獻之磷化物相比,是一個具有潛力的新世代離子電池陽極材料。應用於鋰離子電池上,除了優良的可逆電容量(1400 mA h g-1在0.2 C的充放電流經歷150次循環測試)之外,該材料還具有極高的首圈庫倫效率(82.63%),即便在超高速充放電之下(40 C)仍具有高於商用石墨(372 mA h g-1)的能量密度(400 mA h g-1)。在鈉離子電池中,多孔的磷化鍺化合物微米球依然具有優異的表現,除了優秀的可逆電容量(787 mA h g-1 在0.2 C的充放電流經歷了38次循環),在高電流的充放電之下(0.6 C)也展現了不錯的循環表現(經歷170次循環仍沒有顯著的電量損失)。


    Germanium phosphide is a potential anode material because of its high theoretical capacity and incredible rate capability. However, the huge volume change directly led to poor cyclability and limited the further application. Herein, mesoporous germanium phosphide (MGePx) microspheres with narrow distribution of pore sizes, 4 nm, were first prepared and well solved with the volume change problems by a one-step and template-free approach. Employing short carbon compound (toluene, hexane, benzene) as stabilizing agents in the synthesis, the nanoparticles (~10 nm) could well assemble to microspheres with diameters size ranging 0.5-1.5 μm under the proper amount of stabilizing agents added. On the other hand, without introducing stabilizing agents, the final product yielded to tense microspheres. The uncontrollable aggregations were formed when the excess stabilizing agents were existed in the reaction. The MGePx possessed superior features in LIBs/NIBs, including (Ⅰ) shortening the diffusion path of energy carrier, (Ⅱ) providing the buffer space, and (Ⅲ) nanoparticle size. MGePx showed attractive electrochemical properties to be a potential anode candidate such as high first cycle coulombic efficiency of 82.63%, high reversible capacity (1400 mA h g-1 after 150 cycles at 0.2 C), excellent ultra-high rate capacity (370 mA h g-1 at 72 A g-1, 40 C), and stable cycling performance (450 cycles at 1 C) in the LIBs and high reversible capacity (704 mA h g-1 after 100 cycles at 0.2 C ) and stable cycling performance (200 cycles at 0.6 C) in SIBs.

    中文摘要 I Abstract II 總目錄 III Introduction 1 Result and discussion 1 MGePx Characterization 3 Electrochemical analysis 11 Conclusions 17 Experimental 18 Materials 18 Synthesis of different morphologies Germanium phosphide (GePx) 18 Material Characterization 19 Electrochemical characterization 19 References 20

    1. Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nano 2015, 10 (11), 980-985.
    2. Zhang, C.; Wang, X.; Liang, Q.; Liu, X.; Weng, Q.; Liu, J.; Yang, Y.; Dai, Z.; Ding, K.; Bando, Y.; Tang, J.; Golberg, D., Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. Nano Lett. 2016, 16 (3), 2054-2060.
    3. Sun, J.; Lee, H.-W.; Pasta, M.; Sun, Y.; Liu, W.; Li, Y.; Lee, H. R.; Liu, N.; Cui, Y., Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energ. Storage Mater. 2016, 4, 130-136.
    4. Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y., Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14 (8), 4573-4580.
    5. Liu, S.; Zhang, H.; Xu, L.; Ma, L.; Chen, X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 2016, 304, 346-353.
    6. Lu, Y.; Zhou, P.; Lei, K.; Zhao, Q.; Tao, Z.; Chen, J., Selenium Phosphide (Se4P4) as a New and Promising Anode Material for Sodium-Ion Batteries. Adv. Energ. Mater. 2017, 7 (7), 1601973-n/a.
    7. Wang, Y.; Zhang, L.; Li, H.; Wang, Y.; Jiao, L.; Yuan, H.; Chen, L.; Tang, H.; Yang, X., Solid state synthesis of Fe2P nanoparticles as high-performance anode materials for nickel-based rechargeable batteries. J. Power Sources 2014, 253, 360-365.
    8. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (1), 13-24.
    9. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R., Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010, 22 (35).
    10. Li, Q.; Ma, J.; Wang, H.; Yang, X.; Yuan, R.; Chai, Y., Interconnected Ni2P nanorods grown on nickel foam for binder free lithium ion batteries. Electrochimica Acta 2016, 213, 201-206.
    11. Li, G.-A.; Wang, C.-Y.; Chang, W.-C.; Tuan, H.-Y., Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. ACS Nano 2016, 10 (9), 8632-8644.
    12. Yang, J.; Zhang, Y.; Sun, C.; Liu, H.; Li, L.; Si, W.; Huang, W.; Yan, Q.; Dong, X., Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res 2016, 9 (3), 612.
    13. Lee, J.-M.; Jung, H.; Hwa, Y.; Kim, H.; Im, D.; Doo, S.-G.; Sohn, H.-J., Improvement of electrochemical behavior of Sn2Fe/C nanocomposite anode with Al2O3 addition for lithium-ion batteries. J. Power Sources 2010, 195 (15), 5044-5048.
    14. Jiang, J.; Li, Y.; Liu, J.; Huang, X., Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3 (1), 45-58.
    15. Chen, J.-Y.; Chin, L.-C.; Li, G.-A.; Tuan, H.-Y., Zinc diphosphide nanowires: bismuth nanocrystal-seeded growth and their use as high-capacity lithium ion battery anodes. CrystEngComm 2017, 19 (6), 975-981.
    16. Li, W.; Gan, L.; Guo, K.; Ke, L.; Wei, Y.; Li, H.; Shen, G.; Zhai, T., Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 2016, 8 (16), 8666-8672.
    17. Duveau, D.; Israel, S. S.; Fullenwarth, J.; Cunin, F.; Monconduit, L., Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries. J. Mater. Chem. 2016, 4 (9), 3228-3232.
    18. Li, W.; Li, H.; Lu, Z.; Gan, L.; Ke, L.; Zhai, T.; Zhou, H., Layered phosphorus-like GeP5: a promising anode candidate with high initial Siulombic efficiency and large capacity for lithium ion batteries. Energ. Environ. Sci. 2015, 8 (12), 3629-3636.
    19. Yang, J.; Takeda, Y.; Imanishi, N.; Yamamoto, O., Ultrafine Sn and SnSb0. 14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries. J.Electrochem. Soc. 1999, 146 (11), 4009-4013.
    20. Kwon, H.-T.; Lee, C. K.; Jeon, K.-J.; Park, C.-M., Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode. ACS Nano 2016, 10 (6), 5701-5709.
    21. Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chem. Mater. 2014, 26 (6), 2172-2179.
    22. Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4), 3427-3433.
    23. Liu, B.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G., Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes. Nano Lett. 2013, 13 (7), 3414-3419.
    24. Luo, B.; Zhi, L., Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energ. Environ. Sci. 2015, 8 (2), 456-477.
    25. Ngo, D. T.; Le, H. T. T.; Kim, C.; Lee, J.-Y.; Fisher, J. G.; Kim, I.-D.; Park, C.-J., Mass-scalable synthesis of 3D porous germanium-carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energ. Environ. Sci. 2015, 8 (12), 3577-3588.
    26. Qie, L.; Chen, W.; Xu, H.; Xiong, X.; Jiang, Y.; Zou, F.; Hu, X.; Xin, Y.; Zhang, Z.; Huang, Y., Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energ. Environ. Sci. 2013, 6 (8), 2497-2504.
    27. Shim, J.; Lee, J.; Ye, Y.; Hwang, J.; Kim, S.-K.; Lim, T.-H.; Wiesner, U.; Lee, J., One-Pot Synthesis of Intermetallic Electrocatalysts in Ordered, Large-Pore Mesoporous Carbon/Silica toward Formic Acid Oxidation. ACS Nano 2012, 6 (8), 6870-6881.
    28. Lin, T.; Chen, I.-W.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350 (6267), 1508-1513.
    29. Li, D.; Kaner, R. B., Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred. J. Am. Chem. Soc. 2006, 128 (3), 968-975.
    30. Henkes, A. E.; Vasquez, Y.; Schaak, R. E., Converting Metals into Phosphides:  A General Strategy for the Synthesis of Metal Phosphide Nanocrystals. J. Am. Chem. Soc. 2007, 129 (7), 1896-1897.
    31. Henkes, A. E.; Schaak, R. E., Trioctylphosphine:  A General Phosphorus Source for the Low-Temperature Conversion of Metals into Metal Phosphides. Chem. Mater. 2007, 19 (17), 4234-4242.
    32. Wan, Y.; Guo, Z.; Jiang, X.; Fang, K.; Lu, X.; Zhang, Y.; Gu, N., Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee–Meisel method. J. Colloid Interf. Sci. 2013, 394, 263-268.
    33. Bastús, N. G.; Comenge, J.; Puntes, V., Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 2011, 27 (17), 11098-11105.
    34. Nguyen, T.-D.; Dinh, C.-T.; Do, T.-O., A general procedure to synthesize highly crystalline metal oxide and mixed oxide nanocrystals in aqueous medium and photocatalytic activity of metal/oxide nanohybrids. Nanoscale 2011, 3 (4), 1861-1873.
    35. Hanus, L. H.; Sooklal, K.; Murphy, C. J.; Ploehn, H. J., Aggregation Kinetics of Dendrimer-Stabilized CdS Nanoclusters. Langmuir 2000, 16 (6), 2621-2626.
    36. Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A., Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 2009, 8 (2), 126-131.
    37. Wang; Rørvik, P. M.; van Helvoort, A. T. J.; Holmestad, R.; Grande, T.; Einarsrud, M.-A., Self-Assembled Growth of PbTiO3 Nanoparticles into Microspheres and Bur-like Structures. Chem. Mater. 2007, 19 (9), 2213-2221.
    38. Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y., Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17 (2), 1240-1247.
    39. Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H., Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48 (71), 8931-8933.
    40. Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T., An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Adv. Mater. 2013, 25 (22), 3045-3049.
    41. Zhou, J.; Liu, X.; Cai, W.; Zhu, Y.; Liang, J.; Zhang, K.; Lan, Y.; Jiang, Z.; Wang, G.; Qian, Y., Wet‐Chemical Synthesis of Hollow Red‐Phosphorus Nanospheres with Porous Shells as Anodes for High‐Performance Lithium‐Ion and Sodium‐Ion Batteries. Adv. Mater. 2017.
    42. Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13 (11), 5480-5484.

    QR CODE