研究生: |
陳庭旺 Chen, Ting-Wang |
---|---|
論文名稱: |
雙馬赫詹德干涉儀之入侵感測定位系統:層次聚類分析兩點入侵定位 Intrusion Detection and Positioning Algorithm with Dual Mach-Zehnder Interferometers: Hierarchical Clustering Analysis for Precisely Positioning Two Simultaneous Intrusions |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
劉文豐
Liu, Wen-Fung 李澄鈴 Lee, Cheng-Ling |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 160 |
中文關鍵詞: | 雙馬赫詹德干涉儀 、兩點入侵定位 、層次聚類 |
外文關鍵詞: | Dual Mach-Zehnder Interferometer, Positioning, Hierarchical Clustering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是使用以自製窄線寬雷射做光源的雙馬赫詹德干涉儀構成光纖入侵感測定位系統,是以人為拍擊光纖感測區域來模擬入侵,並收取干涉入侵訊號來進行定位分析。分析的方式是採用聚類分析演算法的「Hierarchical Clustering」,起初要先設立特徵空間來讓資料點散佈其中,在依照條件分成數個聚類,會先對單張訊號進行第一次分群,其中最大聚類質心為此張定位點,然後以一組多張的方式形成新的資料群進行第二次分群,透過此方式達到兩點入侵定位。經過實驗室的1036公尺光纖光纜的入侵測試,我們驗證了此法能夠準確地找出同時兩點入侵的位置,而準確度達21.55公尺以內。
We use a fiber laser made by our laboratory to be the light source for a dual Mach-Zehnder interferometer aiming to locate two simultaneously occurring intrusion. To simulate the intrusions occurring simultaneously, two people heavily tapped the fiber cable at two different positions in order to produce a clockwise and a counterclockwise detected signals. Then the two signals were loaded into a personal computer through a data acquisition module, and analyzed by software based on the method of hierarchical clustering analysis. In the method of hierarchical clustering analysis, a feature space was created for the data points to be scattered, and then the data points were divided into several clusters according to the conditions required. To locate the two intrusions, the first clustering analysis was performed on the signals detected in a 10 ms time period, with the largest cluster center of mass being the location of the intrusion event. Then, 100 pairs of signals detected sequentially were analyzed to give 100 locations with each specified by a CP value. These 100 locations and their CP values constituted the 100 data points in a feature space for the second hierarchical clustering analysis. By choosing proper cluster numbers in the two clustering analysis, respectively, we could then find the two locations of the two intrusion events. In the test of a 1036 m long fiber cable perimeter, we demonstrated an accuracy to within 21.55 m.
[1] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, vol. 113, no. 7, pp. 1151–1158, 1966.
[2] Z. Liu, Y. Bo, and B. Zhou, “Analysis of the mechanics and deformation characteristics of optical fiber acceleration sensor,” International Symposium on Optoelectronic Technology and Application. International Society for Optics and Photonics, Proceedings of SPIE, vol. 10155, pp. 101553U-1-101553U-8, 2016.
[3] Klar, Assaf, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunnelling and Underground Space Technology, vol. 40, pp. 141-150, 2014.
[4] F. Zhu, Y. Zhang, and L. Xia, “Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array,” Journal of Lightwave Technology, vol. 33, no. 23, pp. 4775-4780, 2015.
[5] M. Deng, Y. Zhao, F. Yin, and T. Zhu, “Interferometric fiber-optic tilt sensor exploiting taper and lateral-offset fusing splicing,” IEEE Photonics Technology Letters, vol. 28, no. 20, pp. 2225-2228, 2016.
[6] K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Optics and Lasers in Engineering, vol. 43, no. 3, pp. 511-526, 2005.
[7] R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Optics Letters, vol. 38, no. 9, pp. 1539-1541, 2013.
[8] Y. Zheng, X. Dong, C. C. Chan, P. P. Shum, and H. Su, “Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer,” Optics Communications, vol. 336, pp. 5-8, 2015.
[9] F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, “All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid,” IEEE Sensors Journal, vol. 17, no. 3, pp. 619-622, 2017.
[10] J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Optics Letters, vol. 39, no. 15, pp. 4309-4312, 2014.
[11] Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach–Zehnder interferometer,” IEEE Sensors Journal, vol. 14, no. 1, pp.167-170, 2014.
[12] X. Zhang and W. Peng, “Bent fiber interferometer,” Journal of Lightwave Technology, vol. 33, no. 15, pp. 3351-3356, 2015.
[13] J. Kong, X. Ouyang, A. Zhou, and L. Yuan, “Highly sensitive directional bending sensor based on eccentric core fiber Mach–Zehnder modal interferometer,” IEEE Sensors Journal, vol. 16, no. 18, pp. 6899-6902, 2016.
[14] C. Waltermann, J. Koch, and M. Angelmahr, “Femtosecond laser aided processing of optical sensor fibers for 3D medical navigation and tracking (FiberNavi),” 23rd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, Proceedings of SPIE, vol. 9157, pp. 91577G1-91577G-4, 2014.
[15] M. Hassan, E. Gonzalez, V. Hitchins, and I. Ilev, “Detecting bacteria contamination on medical device surfaces using an integrated fiber-optic mid-infrared spectroscopy sensing method,” Sensors and Actuators B: Chemical, vol. 231, pp. 646-654, 2016.
[16] A. Catalano, F.A. Bruno, M. Pisco, A. Cutolo, and A. Cusano, “Intrusion detection system for the protection of railway assets by using fiber Bragg grating sensors: a case study,” Third Mediterranean Photonics Conference, IEEE, pp. 1-3, May 2014.
[17] X. Zhong, C. Zhang, L. Li, S. Liang, Q. Li, Q. Lü, X. Ding, and Q. Cao, “Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor,” Applied Optics, vol. 53, issue 21, pp. 4645-4650, 2014.
[18] F. Peng, H. Wu, X. Jia, Y. Rao, Z. Wang, and Z. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Optics Express, vol. 22, no. 11, pp. 13804-13810, 2014.
[19] M. Chojnacki, B. Kiilik, and W. Ciurapinski, “Distributed sensor of vibration in fibre optic Michelson’s interferometer configuration,” Experience of Designing and Applications of CAD Systems in Microelectronics. Proceedings of the VI-th International Conference. CADSM, 2001.
[20] Stuart J. Russell, Keith R. C. Brady, and John P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” Journal of Lightwave Technology, vol. 19, no. 2, pp. 205-213, Feb. 2001.
[21] Q. Chen, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Zhang, Y. Li, L. Pan, and C. Ma, “An elimination method of polarization-induced phase shift and fading in dual Mach–Zehnder interferometry disturbance sensing system,” Journal of Lightwave Technology, vol. 31, no. 19, pp. 3135-3141, 2013.
[22] Q. Chen, C. Jin, Y. Bao, Z. Li, J. Li, C. Lu, L. Yang, and G. Li, “A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer,” Optics Express, vol. 22, no. 3, pp. 2167-2173, 2014.
[23] J. Gao, Z. Jiang, Y. Zhao, L. Zhu, and G. Zhao, "Full distributed fiber optical sensor for intrusion detection in application to buried pipelines," Chinese Optics Letters, vol. 3, no. 11, pp. 633-635, 2005.
[24] A. Catalano, F. A. Bruno, C. Galliano, M. Pisco, G. V. Persiano, A. Cutolo, and A. Cusano, "An optical fiber intrusion detection system for railway security," Sensors and Actuators A: Physical, vol. 253, pp. 91–100, 2017.
[25] Paul R. Hoffman, and Mark G. Kuzyk, “Position determination of an acoustic burst along a Sagnac interferometer,” Journal of Lightwave Technology, vol. 22, no. 2, pp. 494–498, 2004.
[26] X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Applied Optics, vol. 50, no. 22, pp. 4333–4338, 2011.
[27] S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” Journal of Lightwave Technology, vol.15, no. 6, pp. 972–976, 1997.
[28] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” Journal of Lightwave Technology, vol. 28, no. 22, pp. 3243–3249, 2010.
[29] C. Ma, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Pan, and M. Tian, “Long-range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers,” Journal of Lightwave Technology, vol. 34, no. 9, pp. 2235-2239, 2016.
[30] Q. Chen, T. Liu, K. Liu, J. Jiang, Z. Shen, Z. Ding, H. Hu, X. Huang, L. Pan, and C. Ma, “An improved positioning algorithm with high precision for dual Mach–Zehnder interferometry disturbance sensing system,” Journal of Lightwave Technology, vol. 33, no. 10, pp. 1954-1960, 2015.
[31] 何馨仁,「雙Mach-Zehnder干涉儀用於分佈式光纖入侵感測定位之研究」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零六年七月。
[32] 許詠証,「雙馬赫詹德干涉儀入侵感測定位系統搭配光纖雷射之研究:同時兩點定位入侵」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零八年七月。
[33] http://debussy.im.nuu.edu.tw/sjchen/DataMining/final/Clustering.pdf
[34] 李孟宸,「雙馬赫詹德干涉儀之入侵感測定位系統:層次聚類分析改善定位精準度」,國立清華大學光電工程研究所碩士班碩士論文,民國一百一十年七月。
[35] Q. Hu, N. YE, and M. ZHU, “Survey of cluster analysis in data mining,” Computer & Digital Engineering, vol. 3, no. 2, pp. 17-20, 2007.
[36] 黃秉鉞,「雙馬赫詹德干涉儀入侵感測定位系統之研究:機器學習演算法」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零九年七月。
[37] Hsin-Ren Ho, Cheng-Yu Hsieh, Yung-Cheng Hsu, and Likarn Wang, “Modified dual Mach-Zehnder interferometers with new locating algorithm for intrusion detection,” Optics Express, vol. 29, no. 21, 2021.
[38] C. Lyu, Member, IEEE, Z. Huo, X. Cheng, J. Jiang, A. Alimasi, and H. Liu, “Distributed optical fiber sensing intrusion pattern recognition based on GAF and CNN,” Journal of Lightwave Technology, vol. 38, no. 15, pp. 4174-4182, 2020.
[39] P. Ma, K. Liu, J. Jiang, Z. Li, P. Li, and T. Liu, “Probabilistic event discrimination algorithm for fiber optic perimeter security systems,” Journal of Lightwave Technology, vol. 36, no. 11, pp. 2069-2075, 2018.