研究生: |
吳彥儒 Wu, Yan-Ru |
---|---|
論文名稱: |
應用在能量極小問題的直接法 Direct methods for energy minimization problems |
指導教授: |
朱家杰
Chu, Chia-Cheih |
口試委員: |
吳金典
薛名成 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | 能量方程 、極小問題 、直接法 、數值積分方法 |
外文關鍵詞: | energy function, minimization problems, direct methods, numerical integration methods |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文章探討解能量極小問題的一種新方法,傳統上使用歐拉-拉格朗日方程式後,再解偏微分方程式。本文中先將能量方乘離散化,再解其最小值。令計算域為有限維歐氏空間中的長方體,使用等距分割點將其離散後,再解出其極小函數。我們提出一種用於能量函數積分的高階精度方法。在線性情形下,將證明離散解與原解會符合相同的偏微分方程與自然邊界條件。此方法亦可應用到曲線上的極小問題與障礙問題。計算域為曲線時,則先將計算域拓展為帶子後,再做歐式空間上的有限差分,即使是複雜的曲線也可使用。文內會提出一些使用此方法的範例。
In this thesis, we propose a direct method for solving energy minimization problems on function spaces. Usually, people solve the related Euler-Lagrange equations to obtain the minimizers. In this thesis, we start with discretizing energy function and solve the minimizer for the discrete system. First, we consider computational domain to be a rectangle in finite dimensional Euclidean space. We use Cartesian grids and find the minimizer numerically. We proposed a higher order discretization method for integral of energy function. In the linear case, we show that the numerical approximation is also satisfied the Euler-Lagrange equation and the natural boundary condition. Moreover, this method can be applied to the minimization problems and obstacle problems on unit circle by extending the domain to a band area. Some numerical examples are presented.
J. Chu and R. Tsai. Volumetric variational principles for a class of partial differential
equations defined on surfaces and curves. ArXiv e-prints, June 2017.
Randall J LeVeque. Finite difference methods for differential equations. Draft version for
use in AMath, 585(6), 1998.
Jerrold E Marsden and Matthew West. Discrete mechanics and variational integrators.
Acta Numerica, 10:357–514, 2001.
Giang Tran, Hayden Schaeffer, William M Feldman, and Stanley J Osher. An l1
penalty method for general obstacle problems. SIAM Journal on Applied Mathematics,
75(4):1424–1444, 2015.
Bruce van Brunt. The calculus of variations. Springer-Verlag New York, 2004.