簡易檢索 / 詳目顯示

研究生: 吳彥儒
Wu, Yan-Ru
論文名稱: 應用在能量極小問題的直接法
Direct methods for energy minimization problems
指導教授: 朱家杰
Chu, Chia-Cheih
口試委員: 吳金典
薛名成
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 20
中文關鍵詞: 能量方程極小問題直接法數值積分方法
外文關鍵詞: energy function, minimization problems, direct methods, numerical integration methods
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文章探討解能量極小問題的一種新方法,傳統上使用歐拉-拉格朗日方程式後,再解偏微分方程式。本文中先將能量方乘離散化,再解其最小值。令計算域為有限維歐氏空間中的長方體,使用等距分割點將其離散後,再解出其極小函數。我們提出一種用於能量函數積分的高階精度方法。在線性情形下,將證明離散解與原解會符合相同的偏微分方程與自然邊界條件。此方法亦可應用到曲線上的極小問題與障礙問題。計算域為曲線時,則先將計算域拓展為帶子後,再做歐式空間上的有限差分,即使是複雜的曲線也可使用。文內會提出一些使用此方法的範例。


    In this thesis, we propose a direct method for solving energy minimization problems on function spaces. Usually, people solve the related Euler-Lagrange equations to obtain the minimizers. In this thesis, we start with discretizing energy function and solve the minimizer for the discrete system. First, we consider computational domain to be a rectangle in finite dimensional Euclidean space. We use Cartesian grids and find the minimizer numerically. We proposed a higher order discretization method for integral of energy function. In the linear case, we show that the numerical approximation is also satisfied the Euler-Lagrange equation and the natural boundary condition. Moreover, this method can be applied to the minimization problems and obstacle problems on unit circle by extending the domain to a band area. Some numerical examples are presented.

    1 Introduction 1 2 Direct method 2 2.1 Algorithm 2 2.2 Periodic boundary condition 3 2.3 Nonperiodic case 8 2.4 Natural boundary conditions 10 2.5 Nonlinear case 12 3 Partial differential equations on unit circle 13 3.1 Differential method 13 3.2 Integration method 14 4 Numerical Example 14 4.1 Bounded open domain in R1 14 4.2 Bounded open domain in R2 16 4.3 Nonlinear case 17 4.4 Unit circle 17 4.5 Minimization problem with obstacle function 18 5 Conclusion 19

    J. Chu and R. Tsai. Volumetric variational principles for a class of partial differential
    equations defined on surfaces and curves. ArXiv e-prints, June 2017.
    Randall J LeVeque. Finite difference methods for differential equations. Draft version for
    use in AMath, 585(6), 1998.
    Jerrold E Marsden and Matthew West. Discrete mechanics and variational integrators.
    Acta Numerica, 10:357–514, 2001.
    Giang Tran, Hayden Schaeffer, William M Feldman, and Stanley J Osher. An l1
    penalty method for general obstacle problems. SIAM Journal on Applied Mathematics,
    75(4):1424–1444, 2015.
    Bruce van Brunt. The calculus of variations. Springer-Verlag New York, 2004.

    QR CODE