簡易檢索 / 詳目顯示

研究生: 陳修彥
Hsiu-Yen Chen
論文名稱: 物鏡式全內反射螢光顯微鏡之單一螢光分子光漂白現象觀察
Single fluorescent molecule photobleaching detection using objective type Total Internal Reflection Fluorescence Microscopy
指導教授: 許志楧
Ian C. Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 60
中文關鍵詞: 單分子螢光全內反射螢光顯微鏡物鏡式全內反射螢光顯微鏡光漂白
外文關鍵詞: single molecule fluorescence, total internal reflection fluorescence microscopy, objective type TIRFM, photobleaching
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了達成單分子螢光的偵測,所以藉由全內反射螢光顯微鏡做螢光激發,來大幅減低背景雜訊,增加單一螢光的可見性。本實驗室利用商用的物鏡式全內反射螢光顯微鏡結合Dual-View與EMCCD來即時觀測單一螢光分子。
    將螢光分子Cy3標記在單股DNA分子上,並藉由抗原抗體結合力,把DNA分子固定在玻片表面,再利用消逝波激發螢光,來觀測單一螢光分子光漂白的現象。
    使用物鏡式全內反射螢光顯微激發系統,已經可以觀測到單一螢光分子光漂白的現象。為了得到最佳的訊雜比,分別使用三種不同的數據分析方法,其中以取螢光分子區域周圍25個像素平均值的方法,能夠得到最佳的訊雜比。藉由將雷射功率降低,觀察到單一螢光分子強度降低,以及螢光分子被光漂白的時間拉長,而螢光分子被光漂白的時間拉長,對單分子研究是很重要的。
    利用雙股DNA分子分別標記上螢光分子Cy3與Cy5,希望能夠觀測到單分子螢光共振能量轉移現象。未來將會把物鏡式全內反射螢光顯微激發系統結合微流道,來觀測單分子動態行為,並整合高解析度雷射光鉗系統,來解決更多感興趣的生物研究。


    In order to detect single molecule fluorescence signal, so I used total internal reflection fluorescence microscopy (TIRFM) to excite the fluorescent molecule. This setup can decrease much noise, and increase the chance of detection single fluorescent signal. Our laboratory used commercial TIRFM to combine with Dual-View and EMCCD, reached to single fluorescent molecule detection.
    The sample of my experiment is single strand DNA labeled Cy3. The single strand DNA are fixed to the cover slip surface by antibody-antigen binding force. Then I used the evanescent wave by total internal reflection to excite the fluorescence, and to observe the phenomenon of single fluorescent molecule photobleaching.
    In my TIRFM system, we already detected single fluorescent molecule photobleaching. In order to obtain better signal to noise ratio (SNR), I used three methods to analyze my experimental data. The method of mean value of 25 pixels in the fluorescence spot can obtain better SNR. By reducing the laser power, I detected the time of fluorescence photobleaching is increased, and the intensity of single fluorescent molecule is lowered. To enhance the time of fluorescent lifetime is important in the single molecule experiments.
    I hope to observe the phenomenon of fluorescence resonance energy transfer (FRET) by using the double strands DNA labeled Cy3 and Cy5. The TIRFM system will combine with flow chamber to reach single molecule dynamical researches, and be integrated to high resolution laser tweezers system to study more biological programs in the future.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖表目錄………………………………………………………………VII 第一章 緒論 1-1前言…………………………………………………………………1 1-2研究動機……………………………………………………………4 1-3文獻回顧……………………………………………………………5 1-4論文大綱……………………………………………………………7 第二章 全內反射螢光顯微激發系統原理 2-1 螢光基本原理………………………………………………………8 2-2 全反射與消逝波……………………………………………………9 2-3全內反射螢光顯微鏡系統…………………………………………10 2-3.1稜鏡式全內反射螢光顯微鏡系統………………………………11 2-3.2物鏡式全內反射螢光顯微鏡系統………………………………12 2-4 螢光共振能量轉移…………………………………………………15 2-5 共軛焦螢光顯微系統………………………………………………20 2-6全內反射螢光顯微鏡與共軛焦螢光顯微鏡系統比較……………21 第三章 系統簡介 3-1 NIKON,TIRF2之物鏡式全內反射螢光顯微鏡系統………………23 3-2 雙影像分光(Dual-View)…………………………………………27 3-3 電子倍增電荷耦合元件……………………………………………29 第四章 實驗設計 4-1 實驗目的……………………………………………………………35 4-2 事前準備事項………………………………………………………35 4-3 實驗方法……………………………………………………………36 4-4 數據分析方法………………………………………………………38 4-4.1 取平均的方法……………………………………………………38 4-4.2 取最大值的方法…………………………………………………39 4-4.3 取最大五個值平均當螢光訊號…………………………………40 4-5 系統測試……………………………………………………………40 4-5.1 完全無光源進入EMCCD(雷射以及EMCCD shutter關閉)………40 4-5.2 緩衝液對系統造成的雜訊………………………………………42 第五章 實驗結果與討論 5-1 一個step跳動的情形………………………………………………44 5-2 二個step跳動的情形………………………………………………48 5-3 減弱雷射光源強度…………………………………………………49 5-4 FRET現象的觀察……………………………………………………51 第六章 結論與未來展望………………………………………………53 參考文獻…………………………………………………………………55 附錄1影像緩衝液的制備………………………………………………58 附錄2玻片清洗步驟……………………………………………………59

    [1] Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., and Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 331 (1995) 450.
    [2] Lindek, S., Cremer, C., Stelzer, E. H. K. Confocal theta fluorescence microscopy with annular apertures. APPLIED OPTICS 35 (1996) 1.
    [3] Lange, F. de, Cambi, A., Huijbens, R., Bakker, B. de, Rensen, W., Garcia-Parajo, M., Hulst, N. van, and Figdor, C. G. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 114 (2001) 4153.
    [4] Trautman, J.K., Macklin, J.J., Brus,M.E., and Bezig, E. Near field spectroscopy of single molecules at room temperature Nature 380 (1994) 451.
    [5] Funatsu, T., Harada, Y., Tokunaga, M., and Yanagida, T.
    Imaging of Single Fluorescent Molecules and individual ATP turnovers by single myosin molecules in aqueous Solution. Nature 374 (1995) 555.
    [6] Ha, T., Enderle, Th., Ogletree, D.F., Chemla, D.S., Selvin, P.R., and Weiss, S. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93 (1996) 6264.
    [7] Svoboda, K., Schmidt, C.F., Schnapp, B.J., and Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365 (1993) 721.
    [8] Veigel, C., Coluccio, L.M., Jontes, J.D., Sparrow, J.C., Milligan, R.A., and Molloy, J.E. The motor protein myosin-1 produces its working stroke in two steps. Nature 398 (1999) 530.
    [9] Vale, R.D., Funatsu, T., Pierce, D.W., Romberg, L., Harada, Y., and Yanagida, Direct observation of single kinesin molecules moving along microtubules. Nature 380 (1996) 451.
    [10] Yildiz, A., Tomishige, M., Vale, R. D., and Selvin1, P. R. Kinesin
    Walks Hand-Over-Hand. SCIENCE 303 (2004) 30.
    [11] Ha, T., Tiong, A.Y., Liang, J., Caldwell, B., Dentz, A.A., Chemla, D.S., Schultz, P.G., and Weiss, S. Single molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl. Acad. Sci. USA 96 (1999) 893.
    [12] Bopp, M.A., Sytnik, A., Howard, T.D., Cogdell, R.J., and Hochstrasser, R.M. The dyamics of structural deformations of immobilized single light-harvesting complexes. Proc. Natl. Acad. Sci. USA 96 (1999) 11271.
    [13] Sako, Y., Minoguchi, S., and Yanagida, T. Single molecule imaging of EGFR signal transduction on the living cell surface. Nature Cell Biology. in press (2000).
    [14] Hirschfeld, T. Optical microscopic observation of single small molecules. Appl.Opt. 15 (1976) 2965.
    [15] Moerner, W., Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62 (1989) 2535.
    [16] Wilkerson, C., Goodwin, P., Ambrose, W., Martin, J., and Keller, R. Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Appl. Phys. Lett. 62 (1993) 2030.
    [17] Lu, H., Xie, X. Single-molecule spectral fluctuations at room temperature. Nature 385 (1997) 143.
    [18] Trautman, J., Macklin, J., Brus, L., and Betzig, E. Near-Field Spectroscopy of Single Molecules at. Room Temperature. Nature 369 (1994) 6475.
    [19] Macklin, J., Trautman, J., Harris, T., and Brus, L. Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272 (1996) 255.
    [20] Mertz, J., Xu, C., and Webb, W. Single-molecule detection by two-photon excited fluorescence. Opt. Lett. 20 (1996) 2532.
    [21] Ishijima, A., Kojima, H., Higuchi, H., Harada, Y., Funatsu, T., and Yanagida, T. Multiple and single molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: Unitary steps and forces. Biophys. J. 70 (1996) 383.
    [22] Molloy, J.E., Burns, J.E., Kendrick-Jones, J., Tregear, R.T., and White, D.C.S. Movement and force produced by a single myosin head. Nature 378 (1995) 209.
    [23] Tokunaga, M.; Kitamura, K.; Saito, K.; Iwane, A. H.; and Yanagida, T. Biochemical and Biophysical Research Communications 1997, 235, 47.
    [24] Stryer, L.; Haugland, R. Proc. Natl. Acad. Sci. USA 1967, 58, 719.
    [25] Vale, R.D., Funatsu, T., Pierce, D.W., Romberg, L., Harada, Y., and Yanagida, Direct observation of single kinesin molecules moving along microtubules. Nature 380 (1996) 451.
    [26] Kojima, H., Muto, E., Higuchi, H., and Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73 (1997) 2012.
    [27] Inoue, Y., Iwane, A.H., and Yanagida, T. Single molecule imaging of one-headed kinesin molecules interacting with a microtubules. Biophys. J. 76 A44 (1999).
    [28] Ha, T., Ting, A. Y., Liang, J., Deniz, A., Chemla, D., Schultz, P., and Weiss, S. Temporal fluctuations of fluorescence resonance energy transfer between two dyes conjugated to a single protein. Chemical Physics 247 (1999) 107.
    [29] Ha, T. Single-Molecule Fluorescence Resonance Energy Transfer. Method 25 (2001) 78.
    [30] http://www.lin.com.tw/
    [31] http://www.optical-insights.com/products.htm
    [32] Okuto, Y., Crowell, C. R. Energy-conservation considerations in the character-. ization of impact ionization in semiconductors. Phys. Rev. B 6 (1972) 3076.
    [33] http://www.emccd.com/papers.htm
    [34] http://www.andor-tech.com

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE