簡易檢索 / 詳目顯示

研究生: 莊翔宇
Chuang, Hsiang-Yu
論文名稱: Solanoeclepin A 之合成研究
Synthetic Studies Towards Solanoeclepin A
指導教授: 汪炳鈞
Uang, Biing-Jiun
磯部稔
Isobe, Minoru
口試委員: 林俊成
Lin, Chun-Cheng
李瑜章
Li, Yu-Jang
陳貴通
Tan, Kui-Thong
廖俊臣
Liao, Chun-Chen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 371
中文關鍵詞: 天然物合成環化反應二錪化釤環丁烷
外文關鍵詞: samarium diiodide
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述天然物solanoeclepin A之合成研究,包括設計並合成solanoeclepin A右邊D, E, F三個環之架構。本論文敘述數個關鍵之碳碳鍵合成反應以合成天然物solanoeclepin A中的四圓環架構中間體 其中關鍵反應包括(1) [2,3]-Wittig 重排反應 (2) 1,4-加成反應 (3) 三氟乙酸汞參與之水合/環化反應 (4) 以二錪化釤的進行含環丁烷架構之合成的研究


    Solanoelcepin A, a triterpenoid hatching stimulant for potato cyst nematode (PCN; Globodera rostochiensis and G. pallida), was first isolated from potato root by Mulder in 1986, and its structure was later determined by Schenk in 1999. As natural hatching stimulus for potato cyst nematode, solaoneclepin A have emerged to be a potential solution for yield loss of potato production over the world. The important
    biological activity and its complexity of structure have intrigued the interest of synthetic chemists to challenge the total synthesis.

    This thesis describes the synthesis of an cyclobutane intermediate, which was prepared from ent-Hajos-Parris ketone . The synthesis consists of four key C-C bond formation reactions, including (i)a [2,3]-Wittig
    rearrangement, (ii) a Michael addition, (iii) a Hg(OTFA)2-mediated oxymercuration/aldol reaction, (iii) the synthesis of cyclobutane intermediate was achieved through a SmI2-mediated radical cyclization, and was carried out in 20 linear synthetic steps with 2.2% yield.

    Table of Contents 1 Introduction 1 1.1 Introduction 1 1.2 Total Synthesis of Solanoeclepin A 3 1.3 Syntheses of Rings ABC of Solanoeclepin A 8 1.4 Syntheses of Rings DEF of Solanoeclepin A 15 1.5 Heteroatom-Directed Conjugation Addition 19 2 Synthetic Plan 22 3 Results and Discussion 24 3.1 Model Study for Rings DEF of Solanoeclepin A Synthesis 24 3.1.1 SmI2-Mediated Ketyl Radical Cyclization 24 3.1.2 Mechanism 25 3.1.3 Additives 26 3.1.4 Model Study of Tricyclo[5.2.1.01,6]decene System 27 3.1.5 Olefination at Easily Enolizable Ketone 29 3.1.6 Hg(OTFA)2-Mediated Oxymercuration/Adol Reaction 32 3.1.7 SmI2-Mediated Cyclobutane Formation Reaction 34 3.1.8 Conclusion 36 3.2 Synthesis of Rings DEF of Solanoeclepin A 37 3.2.1 Synthesis of Tricyclo[5.2.1.01,6]decene Skeleton 37 3.2.2 Au+-Catalyzed Cyclization 46 3.2.3 SmI2-Additive-Mediated Cyclobutane Formation 47 3.2.4 Introduction of Oxygen at C4 of Ring D 51 3.2.5 Conclusion 55 4 Experimental Section 57 4.1 General Information 57 4.2 Experimental Procedure 58 4.2.1 Synthesis of Compound 165 58 4.2.2 Synthesis of Compound 166 59 4.2.3 Synthesis of Compound 167 60 4.2.4 Synthesis of Compound 168 60 4.2.5 Synthesis of Compound 169 61 4.2.6 Synthesis of Compound 170 62 4.2.7 Synthesis of Compound 171 63 4.2.8 Synthesis of Compound 172 64 4.2.9 Synthesis of Compound 183, 185 and 186 64 4.2.10 Synthesis of Compound 190 66 4.2.11 Synthesis of Compound 190 and 191 67 4.2.12 Synthesis of Compound 192 68 4.2.13 Synthesis of Compound 193 68 4.2.14 Synthesis of Compound 195 69 4.2.15 Synthesis of Compound 197 70 4.2.16 Synthesis of Compound 206 71 4.2.17 Synthesis of Compound 207 72 4.2.18 Synthesis of Compound 208 73 4.2.19 Synthesis of Compound 209 73 4.2.20 Synthesis of Compound 210 and 211 74 4.2.21 Synthesis of Compound 212 and 213 75 4.2.22 Synthesis of Compound 211, 215 and 216 76 4.2.23 Synthesis of Compound 217 78 4.2.24 Synthesis of Compound 218 79 4.2.25 Synthesis of Compound 219 80 4.2.26 Synthesis of Compound 220 80 4.2.27 Synthesis of Compound 224 81 4.2.28 Synthesis of Compound 225 and 225a 82 4.2.29 Synthesis of Compound 230 83 4.2.30 Synthesis of Compound 231 84 4.2.31 Synthesis of Compound 232, 233 and 234 85 4.2.32 Synthesis of Compound 221 and 235 87 4.2.33 Synthesis of Compound 239 89 4.2.34 Synthesis of Compound 240 89 4.2.35 Synthesis of Compound 241 90 4.2.36 Synthesis of Compound 229 91 4.2.37 Synthesis of Compound 236 92 4.2.38 Synthesis of Compound 202 93 4.2.39 Synthesis of Compound 248 94 4.2.40 Synthesis of Compound 253 96 4.2.41 Synthesis of Compound 254 97 4.2.42 Synthesis of Compound 255 98 4.2.43 Synthesis of Compound 256 98 4.2.44 Synthesis of Compound 257 99 4.2.45 Synthesis of Compound 249 100 4.2.46 Synthesis of Compound 250 101 4.2.47 Synthesis of Compound 258 102 4.2.48 Synthesis of Compound 259 103 4.2.49 Synthesis of Compound 260 104 4.2.50 Synthesis of Compound 251 105 4.2.51 Synthesis of Compound 252 106 4.2.52 Synthesis of Compound 264 107 4.2.53 Synthesis of Compound 265 108 4.2.54 Synthesis of Compound 268 109 4.2.55 Synthesis of Compound 270 110 4.2.56 Synthesis of Compound 255 111 4.2.57 Synthesis of Compound 271 111 4.2.58 Synthesis of Compound 272 112 5 References 114 6 Supporting Information (I): NMR Spectra 119 1H NMR of Compound 165 120 13C NMR of Compound 165 121 1H NMR of Compound 166 122 13C NMR of Compound 166 123 1H NMR of Compound 167 124 13C NMR of Compound 167 125 1H NMR of Compound 168 126 13C NMR of Compound 168 127 1H NMR of Compound 169 128 13C NMR of Compound 169 129 1H NMR of Compound 170 130 13C NMR of Compound 170 131 1H NMR of Compound 171 132 13C NMR of Compound 171 133 1H NMR of Compound 172 134 13C NMR of Compound 172 135 1H NMR of Compound 186 136 13C NMR of Compound 186 137 1H NMR of Compound 190 138 13C NMR of Compound 190 139 1H NMR of Compound 191 140 13C NMR of Compound 191 141 1H NMR of Compound 192 142 13C NMR of Compound 192 143 1H NMR of Compound 193 144 13C NMR of Compound 193 145 1H NMR of Compound 195 146 13C NMR of Compound 195 147 1H NMR of Compound 197 148 13C NMR of Compound 197 149 1H NMR of Compound 206 150 13C NMR of Compound 206 151 1H NMR of Compound 207 152 13C NMR of Compound 207 153 1H NMR of Compound 208 154 13C NMR of Compound 208 155 1H NMR of Compound 209 156 13C NMR of Compound 209 157 1H NMR of Compound 210 158 13C NMR of Compound 210 159 1H NMR of Compound 211 160 13C NMR of Compound 211 161 1H NMR of Compound 213 162 13C NMR of Compound 213 163 1H NMR of Compound 216 164 13C NMR of Compound 216 165 1H NMR of Compound 217 166 13C NMR of Compound 217 167 1H NMR of Compound 218 168 13C NMR of Compound 218 169 1H NMR of Compound 219 170 13C NMR of Compound 219 171 1H NMR of Compound 220 172 13C NMR of Compound 220 173 1H NMR of Compound 224 174 13C NMR of Compound 224 175 1H NMR of Compound 225 176 13C NMR of Compound 225 177 1H NMR of Compound 225a 178 13C NMR of Compound 225a 179 1H NMR of Compound 230 180 13C NMR of Compound 230 181 1H NMR of Compound 231 182 13C NMR of Compound 231 183 1H NMR of Compound 232 184 13C NMR of Compound 232 185 1H NMR of Compound 233 186 13C NMR of Compound 233 187 1H NMR of Compound 234 188 13C NMR of Compound 234 189 1H NMR of Compound 221 190 13C NMR of Compound 221 191 1H NMR of Compound 235 192 13C NMR of Compound 235 193 1H NMR of Compound 239 194 13C NMR of Compound 239 195 1H NMR of Compound 240 196 13C NMR of Compound 240 197 1H NMR of Compound 241 198 13C NMR of Compound 241 199 1H NMR of Compound 229 200 13C NMR of Compound 229 201 1H NMR of Compound 236 202 13C NMR of Compound 236 203 1H NMR of Compound 202 204 13C NMR of Compound 202 205 1H NMR of Compound 248 206 13C NMR of Compound 248 207 1H NMR of Compound 253 208 13C NMR of Compound 253 209 1H NMR of Compound 254 210 13C NMR of Compound 254 211 1H NMR of Compound 255 212 13C NMR of Compound 255 213 1H NMR of Compound 256 214 13C NMR of Compound 256 215 1H NMR of Compound 257 216 13C NMR of Compound 257 217 1H NMR of Compound 249 218 13C NMR of Compound 249 219 1H NMR of Compound 250 220 13C NMR of Compound 250 221 1H NMR of Compound 258 222 13C NMR of Compound 258 223 1H NMR of Compound 259 224 13C NMR of Compound 259 225 1H NMR of Compound 260 226 13C NMR of Compound 260 227 1H NMR of Compound 251 228 13C NMR of Compound 251 229 1H NMR of Compound 252 230 13C NMR of Compound 252 231 1H NMR of Compound 264 232 13C NMR of Compound 264 233 1H NMR of Compound 265 234 13C NMR of Compound 265 235 1H NMR of Compound 268 236 13C NMR of Compound 268 237 1H NMR of Compound 270 238 13C NMR of Compound 270 239 1H NMR of Compound 271 240 13C NMR of Compound 271 241 1H NMR of Compound 272 242 13C NMR of Compound 272 243 NOESY Spectrum of Compound 197 244 HMBC Spectrum of Compound 197 245 NOESY Spectrum of Compound 210 246 NOESY Spectrum of Compound 230 247 NOESY Spectrum of Compound 234 248 HMBC Spectrum of Compound 234 249 NOESY Spectrum of Compound 248 250 HMBC Spectrum of Compound 248 251 NOESY Spectrum of Compound 250 252 HMBC Spectrum of Compound 250 253 NOESY Spectrum of Compound 252 254 HMBC Spectrum of Compound 252 255 1D NOESY Spectrum of Compound 219 256 1D NOESY Spectrum of Compound 224 257 NOESY Spectrum of Compound 272 258 6 Supporting Information (II): X-Ray Crystallographic Analysis 259 Crystal data of compound 190 260 Crystal data of compound 191 269 Crystal data of compound 194 284 Crystal data of compound 213 292 Crystal data of compound 230 300 Crystal data of compound 241 315

    (1) Hori, S. Byotyugai-Zasshi 2:927–930.
    (2) Masamune, T.; Anetai, M.; Takasugi, M.; Katsui, N. Nature. 1982, 297, 495–496.
    (3) (a) Mulder, J. G.; Diepenhorst, P.; Bruggemann-Rotgans, I. E. M. CT Int. Appl. WO 93/02, 083; (b) Mulder, J. G.; Diepenhorst, P.;Bruggemann–Rotgans, I. E. M. Chem. Abstr. 1993, 118, 185844z.
    (4) Schenk, H.; Driessen, R. A. J.; de Gelder, R.; Goubitz, K.; Nieboer, H.; Bruggemann-Rotgans, I. E. M.; Diepenhorst, P. Croat. Chem. Acta 1999, 72, 593–606.
    (5) Fukuzawa, A.; Furusaki, A.; Ikura, M.; Masamunu, T. J. Chem. Soc. Chem. Commun. 1985, 4, 222–224.
    (6) (a) Murai, A.; Tanimoto, N.; Sakamoto, N.; Masamune, T. J. Am. Chem. Soc. 1988, 110, 1985–1986. (b) Corey, E. J.; Houpis, I. N. J. Am. Chem. Soc. 1990, 112, 8997–8998. (c) Watanabe, H. and Mori, K. J. Chem. Soc. Perkin Trans. 1991, 1, 2919–2934. (d) Shiina, Y.; Tomata, Y.; Miyashita, M.; Tanino, K. Chem. Lett. 2010, 39, 835–837.
    (7) Tanino, K.; Takahashi, M.; Tomata, Y.; Tokura, H.; Uehara, T.; Narabu, T.; Miyashita, M. Nat. Chem. 2011, 3, 484–488.
    (8) (a) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Rutjes, F. P. J. T.; Fraanje, J.; Goubitz, K.; Schenk, H.; Hiemstra, H. Chem. Commun. 2000, 1465–1466. (b) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1693–1700. (c) Benningshof, J. C. J.; Ijsselstiijn, M.; Walner, S. R.; Koster, A. L.; Blaauw, R. H.; van Ginkel, A. E.; Briere, J.-F.; van Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1, 1701–1713. (d) Kleinnijenhuis, R. A.; Timmer, B. J. J.; Lutteke, G.; Smits, J. M. M.; de Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. Chem. Eur. J. 2016, 22, 1266–1269.
    (9) (a) Komada, T.; Adachi, M.; Nishikawa, T. Chem. Lett. 2012, 41, 287–289. (b) Adachi, M.; Torii, M.; Nishikawa, T. Synlett 2015, 7, 965–969.
    (10) (a) Tsao, K.-W.; Cheng, C.-Y.; Isobe, M. Org. Lett. 2012, 14, 5274–5277. (b) Chuang, H.-Y.; Isobe, M. Org. Lett. 2014, 16, 4166–4169. (c) Lin, Y.-T.; Lin, F.-Y.; Isobe, M. Org. Lett. 2014, 16, 5948–5951. (d) Chuang, H.-Y.; Isobe, M. J. Org. Chem. 2017, 82, 2045–2058.
    (11) For HeteroAtom Directed Conjugate Addition (HADCA), see (a) Adachi, M.; Yamauchi, E.; Komada, T.; Isobe, M. Synlett 2009, 7, 1157–1161. (b) Tsao, K.-W.; Isobe, M. Org. Lett. 2010, 12, 5338–5341. (c) Isobe, M.; Niyomchon, S.; Cheng, C.-Y.; Hasakunpaisarn, A. Tetrahedron Lett. 2011, 52, 1847–1850.
    (12) Stork, G.; Cohen, J. F. J. Am. Chem. Soc. 1974, 96, 5270–5272.
    (13) Tanino, K.; Tomata, Y.; Shiina, Y.; Miyashita, M. Eur. J. Org. Chem. 2006, 2, 328–334.
    (14) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 1, 29–32.
    (15) (a) Blaauw, R. H.; Brière, J.-F.; de Jong, R.; Benningshof, J. C. J.; van Ginkel, A. E.; Fraanje, J.; Goubitz, K.; Schenk, H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Org. Chem. 2001, 66, 233–242. (b) Brière, J.-F.; Blaauw, R. H.; Benningshof, J. C. J.; van Ginkel, A. E.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2001, 12, 2371–2377; (c) Hue, B. T. B.; Dijkink, J.; Kuiper, S.; van Schaik, S.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2006, 1, 127–137. (d) Lutteke, G.; Kleinnijenhuis, R. A.; Jacobs, I.; Wrigstedt, P. J.; Correia, A. C. A.; Nieuwenhuizen, R.; Buu, H. B. T.; Goubitz, K.; Peschar, R.; van Maareseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2011, 17, 3146–3155.
    (16) Aubert, C.; Begue, J. P. Chem. Lett. 1989, 10, 1835–1838.
    (17) Rouse, M. B.; Winkler, J.-D. J. Am. Chem. Soc. 2002, 124, 9726–9728.
    (18) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763–1765.
    (19) (a) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652–3653; (b) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2011, 50, 3760–3763.
    (20) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc. 1998,
    120, 11943–11952.
    (21) Shiina, I.; Shibata, J.; Ibuka, R.; Imai, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2001, 74, 113–122.
    (22) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766–8773.
    (23) Ciamician, G.; Silber, P. Ber. Dtsch. Chem. Ges. 1908, 41, 1928–1935.
    (24) For recent reviews on [2+2] photocycloaddition, see: (a) Demuth, M.; Mikhail, G. Synthesis 1989, 145–162. (b) Bach, T. Synthesis 1998, 683–703.
    (25) Krohn, K.; Börner, G. J. Org. Chem. 1994, 59, 6063–6068.
    (26) For synthesis of cyclobutane by SmI2, see: (a) Corey, E. J.; Wu, Y. J. J. Am. Chem. Soc. 1993, 115, 8871–8872. (b) Harb, H. Y.; Collins, K. D.; Garcia Altur, J. V.; Bowker, S.; Campbell, L.; Procter, D. J. Org. Lett. 2010, 12, 5449–5449. (c) Chen, J.-P.; He, Wei.; Yang, Zhen,-Yu.; Yao, Z.-J. Org. Lett. 2015, 17, 3379–3381.
    (27) For the preparation of ent-Hajos-Parrish ketone we used D-proline as the catalyst; see: (a) Hajos, Z. G.; Parrish, D. R. Organic Synthesis; Wiley: New York, 1990; Collect. Vol. VII, pp 363–368. (b) Davies, S. G.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. Chem. Commun. 2005, 30, 3802–3804. (c) Davies, S. G.; Russell, A. J.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 3190–3200.
    (28) (a) Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1, 5–7. (b) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698.
    (29) For selected reviews of SmI2-mediated reactions, see (a) G. A. Molander, Chem. Rev. 1992, 92, 29–68. (b) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114, 5959–6039.
    (30) For cyclobutane formation reactions through SmI2-mediated ketyl radical cyclization reactions, see (a) Hutton, T. K.; Muir, K.; Procter, D. J. Org. Lett. 2002, 4, 2345–2347. (b) Edmonds, D. J.; Muir, K. W.; Procter, D. J. J. Org. Chem. 2003, 68, 3190–3198. (c) Harb, H. Y.; Collins, K. D.; Altur, J. V. G.; Bowker, S.; Campbell, L.; Procter, D. J. Org. Lett. 2010, 12, 5446–5449.
    (31) For cyclobutane formation reactions through SmI2-mediated Barbier-type reactions, see (a) Molander, G. A.; McKie, J. A. J. Org. Chem. 1991, 56, 4112–4120. (b) Corey, E. J.; Wu, Y. J.; J. Am. Chem. Soc. 1993, 115, 8871–8872.
    (32) For cyclobutane formation reactions through SmI2-mediated pinacol coupling, see (a) Hoffmann, H. M. R.; Munnich, I.; Nowitzki, O.; Stuke, H.; Williams, D. J. Tetrahedron. 1996, 52, 11783–11798. (b) Krygowski, E. S.; Murphy–Benenato, K.; Shair, M. D. Angew. Chem. Int. Ed. 2008, 47, 1680–1684.
    (33) For selected reviews of HMPA in SmI2-mediated reactions, see (a) Inanaga, J.; Ishikawa, M.; Yamaguchi, M. Chem. Lett. 1987, 1485–1486. (b) Shabangi, M. Flowers, R. A., II. Tetrahedron Lett. 1997, 38, 1137–1140. (c) Shabangi, M.; Kuhlman, M. L.; Flowers, R. A., II. Org. Lett. 1999, 1, 2133–2135. (d) Enemærke, R.; Hertz, T.; Skrydstrup, T.; Daasbjberg, K. Chem.-Eur. J. 2000, 3747–3754.
    (34) (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem. Int. Ed. 2006, 45, 7086–7090. (b) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905–16918.
    (35) Sono, M.; Hanaoaka, M.; Hashimoto, T.; Asakawa, Y.; Tori, M. Synlett 2009, 3, 469–471.
    (36) Sono, M.; Sugimoto, Y.; Tatara, H.; Ise, N.; Takaoka, S.; Tori, M. Tetrahedron 2008, 64, 11096–11104.
    (37) For selected reviews of SmBr2-and SmCl2-mediated reactions, see (a) Lebrun, A.; Namy, J. L.; Kagan, H. B. Tetrahedron Lett. 1993, 34, 2311–2314. (b) Fuchs, J. R.; Mitchell, M. L.; Shanbangi, M.; Flowers II, R. A., II. Tetrahedron Lett. 1997, 38, 8157–8158. (c) Hélion, F.; Lannou, M. I.; Namy, L. Tetrahedron Lett. 2003, 44, 5007–5510. (d) Miller, R. S.; Sealy, J. M.; Shabangi, M.; Kuhlman, M. L.; Fuchs, J. R.; Flowers, R. A., II. J. Am. Chem. Soc. 2000, 122, 7718–7722.
    (38) For addition of nucleophile to easily enolizable ketone, see: (a) Stéphan, E.; Affergan, T.; Weber, P.; Jaouen, G. Tetrahedron Lett. 1998, 39, 9427–9430. (b) Stéphan, E.; Olaru, A.; Jauen, G. Tetrahedron Lett. 1999, 40, 8571–8574. (c) Trost, B. M.; Mikhail, G. K. J. Am. Chem. Soc. 1987, 109, 4124–4127.
    (39) For examples of gold-catalyzed hydration, see: (a) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271–2296. (b) Nun, P.; Ramón, R. S.; Gaillard, S.; Nolan, S. P. J. Organomet. Chem. 2011, 696, 7–11. (c) Ghosh, N.; Nayak, S.; Sahoo, A. K. J. Org. Chem. 2011, 76, 500-511. (d) Wang, W.; Xu, B.; Hammond, G. B. J.
    Org. Chem. 2008, 74, 1640–1643.
    (40) (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395−403. (b) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028–9072. (c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 667–698. (d) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809–2811.
    (41) Kumar, R. R.; Haveli, S. D.; Kagan, H. Synthesis 2011, 12, 1709-1712.
    (42) Evans, W. J.; Gummersheimer, T. S.; Ziller, J. W. J. Am. Chem. Soc. 1995, 117, 8999–9002.
    (43) (a) Sugahara, T.; Fukuda, H.; Iwabuchi, Y. J. Org. Chem. 2004, 69, 1144–1177. (b) Fleck, M.; Bach, T. Angew. Chem. Int. Ed. 2008, 47, 6189–6191. (c) Ibrahim-Ouali, M.; Romero, E. Steroids 2012, 77, 157–167.
    (44) (a) Borah, J. M.; Chowdhury, P. Steroids 2011, 76, 1341–1345. (b) Li, C.; Budge, L. P.; Driscoll, C. D.; Willardson, B. M.; Allman, G. W.; Savage, P. B. J. Am. Chem. Soc. 1999, 121, 931–940. (c) Ghosh, A. K.; Xi, Kai. Org. Lett. 2007, 9, 4013–4016. (d) Kozikowski, A. P.; Park, P, U. J. Org. Chem. 1990, 55, 4668–4682.
    (45) Berliner, M.; Belecki, K. Org. Synth. 2007, 84, 102–110.
    (46) For the preparation of Dess-Martin periodinane, see: (a) Frigerio, M.; Santagostino, M.; Spurore, S. J. Org. Chem. 1999, 64, 4537–4538. (b) Ireland, R. E.; Liu, Longbin. J. Org. Chem. 1993, 58, 2899–2899.
    (47) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013.
    (48) Ryu, I.; Murai, S.; Hatayama, Y.; Sonoda, N. Tetrahedron Lett. 1978, 37, 3455–3458.
    (49) (a) Nicolaou, K. C.; Montagnon, T.; Baran, P.S. Angew. Chem. Int. Ed. 2002, 41, 993–996. (b) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem. Int. Ed. 2002, 41, 996–1000.
    (50) Fuji, K.; Kawabata, T.; Fujita, E. Chem. Pharm. Bull. 1980, 28, 3662–3664.
    (51) For the preparation of organocerium reagents, see: (a) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49, 3904–3912. (b) Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233–4236.
    (52) For selected reviews of FeCl3 in SmI2-mediated reactions, see (a) Hasegawa, E.; Tsuchida, H.; Tamura, M. Chem. Lett. 2005, 34, 1688–1689. (b) Tsuchida, H.; Tamura, M.; Hasegawa, E. J. Org. Chem. 2009, 74, 2467–2475. (c) Zhou, X.; Liu, W. J.; Ye, J. L.; Huang, P. Q. Tetrahedron 2007, 63, 6346–6357.
    (53) For selected reviews of NiI2 in SmI2-mediated reactions, see (a) Sono, M.; Ise, N.; Shoji, T.; Tori, M. Molecules 2012, 17, 11079–11088. (b) Choquette, K. A.; Sadasivam, D. V.; Flowers, R. A., II J. Am. Chem. Soc. 2011, 133, 10655–10661. (c) Heumann, L. V.; Keck, G. E. Org. Lett. 2007, 9, 1951-1954. (d) Molander, G. A.; Harris, C. R. J. Org. Chem. 1997, 62, 7418–7429.
    (54) Brown, H. C.; Rei, M.-H. J. Am. Chem. Soc. 1969, 91, 5646–5647.
    (55) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968–972.

    QR CODE