研究生: |
涂育瑋 Tu, Yu-Wei |
---|---|
論文名稱: |
樟腦衍生之胺化合物與(2S,4R)-4-第三丁基二甲基矽氧基-L-脯胺酸之縮合物催化偶氮二羧酸二苄基酯與醛類進行不對稱胺化反應之研究 Asymmetric Amination Reactions of Aldehydes with Dibenzyl Azodicarboxylate Catalyzed by Camphor-Derived 4-TBSO-L-Prolinamide |
指導教授: |
汪炳鈞
Uang, Biing-Jiun |
口試委員: |
陳建添
Chen, Chien-Tien 陳榮傑 Chein, Rong-Jie |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 148 |
中文關鍵詞: | 樟腦 、不對稱 、胺化反應 、偶氮二羧酸二苄基酯 、醛類 |
外文關鍵詞: | Camphor, Asymmetric, Amination, Dibenzyl Azodicarboxylate, Aldehydes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨以反式-4-第三丁基二甲基矽氧基-L-脯胺酸與樟腦衍生之掌性有機催化劑催化偶氮二羧酸二苄基酯與一系列之醛類進行不對稱胺化反應,建立以R組態為主的具有光學活性之產物。探討一系列溶劑、溫度、添加劑、反應物之當量數及催化劑之當量數對不對稱胺化反應之影響及探討,發現僅需1 mol%催化量的樟腦衍生之胺催化劑30,以二氯甲烷做為溶劑並在0 °C的條件下,即可成功將偶氮二羧酸二苄基酯與醛類進行不對稱胺化反應,得到高達78 – >99%之產率與92 – 99%之鏡像選擇性。
This thesis reported the application of camphor-derived-(2S,4R)-4- OTBS-L-prolinamide as a chiral organo catalyst in the asymmetric amination reaction of aldehydes with dibenzyl azodicarboxylate. We found that 1.0 mol% catalyst 30 was able to catalyze the asymmetric amination of aldehydes with dibenzyl azodicarboxylate without any additive to afford chiral amination adduct with up to 99% ee (R) in excellent yields.
[1] L. Pasteur, Ann. Chim. Physique 1848, 24, 442–459.
[2] (a) J. H. van’t Hoff, Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445–454;
(b) J.-A. Le Bel, Bull. Soc. Chim. Fr. 1874, 22, 337–347.
[3] J. Seyden-penne. In〝Chiral Auxiliaries and Ligands in Asymmetric
Synthesis〞, John-Wiley & Sons, New York, 1995
[4] “Reagents, Catalysts and Building Blocks for Enantioselective
Synthesis Resolving Agent” Merck’s Chiralica
[5] D. B. Calne, M. Sandlar, Nature 1970, 226, 21–24.
[6] S. C. Stinson, Chem. Eng. News 1992, 70, September 28, 46–79.
[7] G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.;
Houben-Weyl, Stereoselective Synthesis, 1995.
[8] (a) J. D. Morrison, Eds.; Asymmetric Synthesis Vol. 1-5, Academic,
New York, 1983. (b) H. U. Blaser, Chem. Rev. 1992, 92, 935–952.
[9] (a) I. Ojima, Eds.; Catalyst Asymmetric Synthesis, VCH, Weinheim, 1993. (b) E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Eds.; Comprehensive Asymmetric Catalyst I-III, Springer, Berlin, 1999. (c) I. Ojima, Eds.; Catalyst Asymmetric Synthesis, 2nd ed, Wiley-VCH, New York, 2000. (d) G. Q. Lin, Y. M. Li, A. S. C. Chan, Eds.; Principles and Application of Asymmetric Synthesis, Wiley-Interscience, New York, 2001.
[10] (a) F. A. Luzzio, Tetrahedron 2001, 57, 915–945; (b) S. H. Handa, K. Nagawa, Y. Sohtome, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed. 2008, 47, 3230–3233.
[11] R. Ballin, M. Petrini, Tetrahedron 2004, 60, 1017–1047.
[12] (a) S. Bräse, H. Vogt, S. Vanderheiden, Chem. Commun. 2003, 2448–2449; (b) S. Bräse, T. Baumann, H. Vogt, Eur. J. Org. Chem. 2007, 266–282.
[13] C. Kwunmin, L. Pang-Min, C. Chihliang, R. J. Reddy, T. Ying-Fang,
K. Hsuan-Hao, Eur. J. Org. Chem. 2010, 42-46.
[14] C. Kwunmin, L. Pang-Min, D. R. Magar, Eur. J. Org. Chem. 2010,
5705-5713.
[15] For selected reviews and articles, see: a) P. I. Dalko, L. Moisan,
Angew. Chem. Int. Ed. 2004, 43, 5138–5175; b) P. I. Dalko, ed.,
Comprehensive Enantioselective Organocatalysis: Catalysts,
Reactions, and Applications, Wiley-VCH, weinheim, 2013; c) B.
List, Tetrahedron 2002, 58, 5573–5590; d) N. Momiyama, H. Torii,
S. Saito, H. Yamamoto, Proc. Natl. Acad. Sci. 2004, 101, 5374–
5378; e) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen,
Angew. Chem. Int. Ed. 2005, 44, 794–797; f) Y. Hayashi, H. Gotoh,
T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212–4215; g)
C.-L. Cao, M.- C. Ye, X.-L. Sun, Y. Tang, Org. Lett. 2006, 8, 2901–
2904; h) S. P. Brown, N. C. Goodwin, D. W. C. MacMillan, J. Am.
Chem. Soc. 2003, 125, 1192–1194; i) P. Zhou, L. Zhang, S. Luo, J.-P.
Cheng, J. Org. Chem. 2012, 77, 2526–2530; j) W. Notz, K. Sakthivel,
T. Bui, G. Zhong, C. F. Barbas III, Tetrahedron Lett. 2001, 42, 199–
201; k) Z. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-
Z. Jiang, Y.- D. Wu, J. Am. Chem. Soc. 2003, 125, 5262–5263; l) W.
Zhuang, T. B. Poulsen, K. A. Jørgensen, Org. Biomol. Chem. 2005, 3,
3284–3289; m) Y. Cheng, J. An, L.-Q. Lu, L. Luo, Z.-Y. Wang, J.-R.
Chen, W.-J. Xiao, J. Org. Chem. 2011, 76, 281–284; n) T. Okino, Y.
Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005,
127, 119–125; o) R. P. Herrera, V. Sgarzani, L. Bernardi, A. Ricci,
Angew. Chem. Int. Ed. 2005, 44, 6576–6579; p) P. Melchiorre, Angew.
Chem. Int. Ed. 2012, 51, 9748–9770; q) M. Terada, K. Machioka, K.
Sorimachi, Angew. Chem. Int. Ed. 2006, 45, 2254–2257; r) M. S. Kerr,
J. R. de Alaniz, T. Rovis, J. Am. Chem. Soc. 2002, 124, 10298–10299.
[16] For selected reviews, see: a) D. W. C. MacMillan, Nature 2008, 455,
304–308; b) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli,
Angew. Chem. Int. Ed. 2008, 47, 6138–6171; c) A. Moyano, R. Rios,
Chem. Rev. 2011, 111, 4703–4832; d) K. L. Jensen, G. Dickmeiss,
H. Jiang, Ł. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2012, 45,
248–264; e) C. M. R. Volla, I. Atodiresei, M. Rueping, Chem. Rev.
2014, 114, 2390–2431; f) B. S. Donslund, T. K. Johansen, P. H.
Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem. Int. Ed.
2015, 54, 13860– 13874; g) B. M. Paz, H. Jiang, K. A. Jørgensen,
Chem. Eur. J. 2015, 21, 1846–1853; h) S. Afewerki, A. Córdova,
Chem. Rev. 2016, 116, 13512–13570.
[17] K. A. Jørgensen, A. Bøgevig, K. Juhl, N. Kumaragurubaran, Z. Wei,
Angew. Chem. Int. Ed. 2002, 41, 1790–1793.
[18] B. List, J. Am. Chem Soc. 2002, 124, 5656–5657.
[19] S. Bahmanyar, K. N. Houk, J. Am. Chem. Soc. 2001, 123, 9922-9923.
[20] A. Armstrong, D. G. Blackmond, A. Moran, M. Hughes, J. Am. Chem.
Soc. 2010, 132, 7598–7599.
[21] M. A. Pericàs, F. Xinyuan, S. Sayalero, Adv. Synth. Catal. 2012, 354,
2971–2976.
[22] M. J. Vetticatt, J. Macharia, Angew. Chem. Int. Ed. 2017, 56, 1–6.
[23] 曹郁涵碩士論文,國立清華大學化學系,2010年。
[24] 葉祐成碩士論文,國立清華大學化學系,2010年。
[25] 麥正輝碩士論文,國立清華大學化學系,2011年。
[26] 洪渝銘博士論文,國立清華大學化學系,2017年。
[27] G. Yuefa, Z. Fanglin, Z. Yirong, D. Junfang, J. Org. Chem. 2011, 76,
588–600.