簡易檢索 / 詳目顯示

研究生: 陳學志
Chin, Xue-Zhi Edward
論文名稱: 小盾鱧在臺灣湖泊與溪流的成長差異
The difference of growth in Channa micropeltes between the lake and stream in Taiwan
指導教授: 曾晴賢
Tzeng, Chyng-Shyan
口試委員: 蕭仁傑
Shiao, Jen-Chieh
廖德裕
Liao, Te-Yu
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 69
中文關鍵詞: 小盾鱧外來種鱗片成長魚虎多曼魚
外文關鍵詞: C.micropeltes, invasive, scale, growth, GiantSnakehead, IkanToman
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 淡水外來種魚類入侵,一直都是臺灣水域生態面臨的主要問題之一。外來種的入侵除了會壓縮原生物種的生存空間,還會對原生種造成一定程度的威脅。近幾年外來種小盾鱧(Channa micropeltes)的入侵持續受到關注,但針對小盾鱧的相關文獻不多,本研究希望透過所移除之小盾鱧的樣本研究,找出小盾鱧在臺灣湖泊與溪流的成長差異,並找出適合小盾鱧的移除方式。
    本研究於2019年8月至2020年9月間,在南投縣日月潭與苗栗縣景山溪兩地,進行小盾鱧的移除與樣本的採集。透過魚體體長、體重、鱗片輪數與輪距的比較,發現日月潭的小盾鱧在相同體長與鱗片輪數區間時,長得比景山溪小盾鱧重。日月潭小盾鱧在鱗片輪數120輪以下的輪距寬度,也比景山溪小盾鱧寬。日月潭小盾鱧的空胃比例更是遠低於景山溪小盾鱧。進一步利用景山溪小盾鱧鱗片輪距與景山溪上游鯉魚潭水庫的降雨資料比較,可以看出景山溪小盾鱧的末段輪數輪距,隨著集水區降雨量減少與水庫蓄水量的降低而變寬。顯示小盾鱧在溪流中的成長會受到水量的變化影響因而較湖泊不利。
    從胃內含物的物種分析中,也顯示了小盾鱧對臺灣原生物種的危害非常大。因溪流型小盾鱧有較高機率處於空胃的情況,因此利用誘捕法或許更有利於溪流小盾鱧的移除。湖泊型小盾鱧因其幼魚成群覓食的習性,因此可以透過幼魚集體浮出水面換氣時,利用電器捕魚法一網打盡。小盾鱧的入侵對臺灣水域生態影響頗大,因此呼籲有關單位應嚴正看待,並持續地針對已入侵區域進行移除作業。


    Invasive fishes has become a main problem on the freshwater ecosystem of Taiwan. Native species could lost their living habitat due to the threats by invasive species hence decreasing on the number. The awareness of threaten on freshwater ecosystem by giant snakehead (Channa micropeltes) had been raised up these few years but there is lack of the reference on this species. Through the removal on giant snakehead, our experiment tried to find the difference on growth between lake-living and stream-living giant snakehead, and find out the better way to remove this species.
    Our experiment had done the removal of giant snakehead in between August 2019 and September 2020. Through the comparison between the body length, body weight, number and width of scale rings on giant snakehead we found out fish that live in the Sun Moon Lake have better growth circumstance than fish that live in Jing Shan River. We had found that when scale ring on the fish grow less than 120, the width of scale rings found on fish in Sun Moon Lake appear to be wider than fish found in Jing Shan River. The empty stomach content ratio of Sun Moon Lake’s giant snakehead is also less than that of Jing Shan River. Futher comparison between the width of scale ring of Jing Shan River giant snakehead and the precipitation of the Li Yu Reservoir showed that the width of the last few scale rings became wider when the precipitation and the accumulation of the reservior became lower. Hence we concluded that the growth of giant snakehead will be varied by the flow of the river and face much more hardtime compare to the giant snakehead that lived in the lake.
    The analysis on stomach content showed that the threat on native species by giant snakehead is large. We concluded that fishing with bait/fake bait is an efficient way to eliminate giant snakehead that live in stream due to high ratio of empty stomach content ratio. Elimination of fish that live in lake by electrical fishing during the time they breathe on the surface of water due to group foraging habit of small fish is a working way too. The elimination of giant snakehead is a must due to the mass threaten on the native species.

    謝誌 中文摘要 Abstract 目錄 第一章----------------1 第二章----------------5 第三章----------------8 第四章----------------12 第五章----------------18 參考文獻--------------20

    1. Amornsakun, T., Sriwatana, W., & Promkaew, P. (2011). Feeding behaviour of snake head fish, Channa striatus larvae. Songklanakarin Journal of Science & Technology, 33(6).
    2. Amornsakun, T., Sriwatana, W., & Promkaew, P. (2011). Some aspects in early life stage of snake head fish, Channa striatus larvae. Songklanakarin Journal of Science & Technology, 33(6).
    3. Arnold Jr, E. L. (1951). An impression method for preparing fish scales for age and growth analysis. The Progressive Fish-Culturist, 13(1), 11-16.
    4. Arul, V. (1991). Effects of delayed feeding on growth and survival of Channa striatus (Bloch) larvae. Aquaculture and Fisheries Management, 22(4), 423-434.
    5. Barney, R. L. (1924). A Confirmation of Borodin's Scale Method of Age Determination of Connecticut River Shad. Transactions of the American Fisheries Society, 54(1), 168-177.
    6. Baudouin, M., Marengo, M., Pere, A., Culioli, J. M., Santoni, M. C., Marchand, B., & Durieux, E. D. H. (2016). Comparison of otolith and scale readings for age and growth estimation of common dentex Dentex dentex. Journal of Fish Biology, 88(2), 760-766.
    7. Beamish, R. J., & Chilton, D. (1977). Age determination of lingcod (Ophiodon elongatus) using dorsal fin rays and scales. Journal of the Fisheries Board of Canada, 34(9), 1305-1313.
    8. Beamish, R. J., & McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society, 112(6), 735-743.
    9. Benziger, A., Philip, S., Raghavan, R., Ali, P. H. A., Sukumaran, M., Tharian, J. C., Dahanukar, N., Baby, F., Peter, R., Devi, K. R., Radhakrishnan, K. V., Haniffa, M. A., Britz, R., Antunes, A. (2011). Unraveling a 146 years old taxonomic puzzle: validation of Malabar snakehead, species-status and its relevance for channid systematics and evolution. PLoS One, 6(6), e21272.
    10. Block, R. J., Horwitt, M. K., & Bolling, D. (1949). Comparative Protein Chemistry: The Composition of the Proteins of Human Teeth and Fish Scales. Journal of Dental Research, 28(5), 518-526.
    11. Borodin, N. (1924). Age of shad (Alosa sapidissima Wilson) as determined by the scales. Transactions of the American Fisheries Society, 54(1), 178-184.
    12. Bruton, M. N., & Allanson, B. R. (1974). The growth of Tilapia mossambica Peters (Pisces: Cichlidae) in Lake Sibaya, South Africa. Journal of Fish Biology, 6(6), 701-715.
    13. Burgiel, S. W., & Muir, A. A. (2010). Invasive Species, Climate Change and Ecosystem-Based Adaptation: Addressing Multiple Drivers of Global Change. Global Invasive Species Programme (GISP), Washington, DC, US, and Nairobi, Kenya.
    14. Cable, L. E. (1956). Validity of age determination from scales, and growth of marked Lake Michigan lake trout. Fishery Bulletin of the Fish and Wildlife Service, 57, 1-59.
    15. Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2), 197-242.
    16. Campana, S. E., & Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032.
    17. Córdova-Tapia, F., & Zambrano, L. (2016). Fish functional groups in a tropical wetland of the Yucatan Peninsula, Mexico. . Neotropical Ichthyology, 14(02).
    18. Datta, S. N., Kaur, V. I., Dhawan, A., & Jassal, G. (2013). Estimation of length-weight relationship and condition factor of spotted snakehead Channa punctata (Bloch) under different feeding regimes. SpringerPlus, 2(1), 1-5.
    19. Degens, E. T., Deuser, W. G., & Haedrich, R. L. (1969). Molecular structure and composition of fish otoliths. Marine biology, 2(2), 105-113.
    20. Dub, J. D., Redman, R. A., Wahl, D. H., & Czesny, S. J. (2013). Utilizing random forest analysis with otolith mass and total fish length to obtain rapid and objective estimates of fish age. Canadian Journal of Fisheries and Aquatic Sciences, 70(9), 1396-1401.
    21. Hamid, M. A., Mansor, M., & Nor, S. A. M. (2015). Length-weight relationship and condition factor of fish populations in Temengor Reservoir: Indication of environmental health. Sains Malaysiana, 44(1), 61-66.
    22. Handeland, S. O., Imsland, A. K., & Stefansson, S. O. (2008). The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture, 283(1-4), 36-42.
    23. Hecht, T. (1980). A comparison of the otolith and scale methods of ageing, and the growth of Sarotherodon mossambicus (pisces: Gchlidae) in a Venda impoundment (Southern Africa). African Zoology, 15(4), 222-228.
    24. Hien, T. T. T., Be, T. T., Lee, C. M., & Bengtson, D. A. (2015). Development of formulated diets for snakehead (Channa striata and Channa micropeltes): Can phytase and taurine supplementation increase use of soybean meal to replace fish meal? Aquaculture, 448, 334-340.
    25. Hien, T. T. T., Tam, B. M., Tu, T. L. C., & Bengtson, D. A. (2017). Weaning methods using formulated feeds for snakehead (Channa striata and Channa micropeltes) larvae. Aquaculture research, 48(9), 4774-4782.
    26. Ibañez, A. L., Cowx, I. G., & O'Higgins, P. (2007). Geometric morphometric analysis of fish scales for identifying genera, species, and local populations within the Mugilidae. Canadian Journal of Fisheries and Aquatic Sciences, 64(8), 1091-1100.
    27. Judy, M. H. (1961). Validity of age determination from scales of marked American shad. Fishery Bulletin of the Fish and Wildlife Service, 61, 161-170.
    28. Khan, M. A., & Khan, S. (2009). Comparison of age estimates from scale, opercular bone, otolith, vertebrae and dorsal fin ray in Labeo rohita (Hamilton), Catla catla (Hamilton) and Channa marulius (Hamilton). Fisheries Research, 100(3), 255-259.
    29. Khan, M. A., Khan, S., & Khan, S. (2017). Precision of age estimates in striped snakehead Channa striata (Bloch, 1793) from the Ganga River and its tributaries (rivers Gomti and Yamuna). Journal Applied Ichthyology, 33(2).
    30. Khemiri, S., Meunier, F. J., Laurin, M., & Zylberberg, L. (2001). Morphology and structure of the scales in the Gadiformes (Actinopterygii: Teleostei: Paracanthopterygii) and a comparison to the elasmoid scales of other Teleostei. Cahiers de biologie marine, 42(4), 345-362.
    31. Kubitza, F., & Lovshin, L. L. (1999). Formulated diets, feeding strategies, and cannibalism control during intensive culture of juvenile carnivorous fishes. Reviews in Fisheries Science, 7(1), 1-22.
    32. Liu, W. T., Zhang, Y., Li, G. Y., Miao, Y. Q., & Wu, X. H. (2008). Structure and composition of teleost scales from snakehead Channa argus (Cantor)(Perciformes: Channidae). Journal of Fish Biology, 72(4), 1055-1067.
    33. Lowe, S., Browne, M., Boudjelas, S., & De, P. M. (2000). 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database.
    34. Maceda-Veigaa, A., López, R., & Green, A. J. (2017). Dramatic impact of alien carp Cyprinus carpio on globally threatened diving ducks and other waterbirds in Mediterranean shallow lakes. Biological Conservation, 212, 74-85.
    35. Marcy Jr, B. C. (1969). Age determinations from scales of Alosa pseudoharengus (Wilson) and Alosa aestivalis (Mitchill) in Connecticut waters. Transactions of the American Fisheries Society, 98(4), 622-630.
    36. Mayank, P., Tyagi, R. K., & Dwivedi, A. C. (2015). Studies on age, growth and age composition of commercially important fish species, Cirrhinus mrigala (Hamilton, 1822) from the tributary of the Ganga river, India. European Journal of Experimental Biology, 5(2), 16-21.
    37. Morioka, S., Vongvichith, B., Chanthasone, P., Phommachane, P., & Suzuki, N. (2016). Reproductive season, age estimation and growth in a striped snakehead Channa striata population in Nasaythong District, Vientiane Province, Central Laos. Aquaculture Science, 64(2), 183-191.
    38. Mugiya, Y., Watabe, N., Yamada, J., Dean, J. M., Dunkelberger, D. G., & Shimizu, M. (1981). Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comparative Biochemistry and Physiology, 68A(4), 659-662.
    39. Musikasinthorn, P. (1998). Channa panaw, a new channid fish from the Irrawaddy and Sittang River basins, Myanmar. Ichthyological Research, 45(4), 355-362.
    40. Musikasinthorn, P., & Taki, Y. (2001). Channa siamensis (Günther, 1861), a junior synonym of Channa lucius (Cuvier in Cuvier and Valenciennes, 1831). Ichthyological Research, 48(3), 319-324.
    41. Okuda, M., Ogawa, N., Takeguchi, M., Hashimoto, A., Tagaya, M., Chen, S., Hanagata N., Ikoma, T. (2011). Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography. Microscopy and Microanalysis, 17(5), 788.
    42. Olson, K. R., Roy, P. K., Ghosh, T. K., & Munshi, J. S. D. (1994). Microcirculation of gills and accessory respiratory organs from the air‐breathing snakehead fish, Channa punctata, C. gachua, and C. marulius. The Anatomical Record, 238(1), 92-107.
    43. Onozato, H., & Watabe, N. (1979). Studies on fish scale formation and resorption. III. Fine Structure and Calcification of the Fibrillary Plates of the Scales in Carassius auratus (Cypriniformes: Cyprinidae). Cell and tissue research, 201(3), 409-422.
    44. Ottaway, E. M., & Simkiss, K. (1977). “Instantaneous” growth rates of fish scales and their use in studies of fish populations. Journal of Zoology, 181(3), 407-419.
    45. Panfili, J., TomÁS, J., & Morales-Nin, B. (2009). Otolith microstructure in tropical fish. In Tropical fish otoliths: information for assessment, management and ecology (pp. 212-248): Springer.
    46. Penha, J., Mateus, L., & Lobón-Cerviá, J. (2015). Population regulation in a Neotropical seasonal wetland fish. Environmental Biology of Fishes, 98, 1023-1034.
    47. Rainboth, W. J. (1996). Fishes of the cambodian mekong: Food & Agriculture Org.
    48. Recher, H. F., & Clark, S. S. (1974). A biological survey of Lord Howe Island with recommendations for the conservation of the island's wildlife. Biological Conservation, 6(4), 263-273.
    49. Robillard, S. R., & Marsden, J. E. (1996). Comparison of otolith and scale ages for yellow perch from Lake Michigan. Journal of Great Lakes Research, 22(2), 429-435.
    50. Schönbörner, A. A., Boivin, G., & Baud, C. A. (1979). The mineralization processes in teleost fish scales. Cell and tissue research, 202(2), 203-212.
    51. Thaiso, K., Yuangsoi, B., Wongmaneeprateep, S., Niamphithak, P., Wiriyapattanasub, P., Tola, S., & Charoenwattanasak, S. (2019). A study on some biological aspects of giant snakehead fish (Channa micropeltes) in Huai Suea Ten Wetland Site in Thailand. Asian Journal of Fisheries and Aquatic Research, 1-10.
    52. Toft, J. D., Simenstad, C. A., Cordell, J. R., & Grimaldo, L. F. (2003). The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries, 26(3), 746-758.
    53. Towns, D. R., Atkinson, I. A. E., & Daugherty, C. H. (2006). Have the harmful effects of introduced rats on islands been exaggerated? Biological Invasions, 8, 863-891.
    54. Ujjania, N. C., Soni, N., & Sharma, L. L. (2014). Determination of age and growth of Cyprinid fish of tropical environment using Scale-A protocol. Fishing Chimes, 34(4), 51-56.
    55. Vishwanath, W., & Geetakumari, K. (2009). Diagnosis and interrelationships of fishes of the genus Channa Scopoli (Teleostei: Channidae) of northeastern India. Journal of Threatened Taxa, 1(2), 97-105.
    56. Walter, R. C., & James, D. W. (2004). Snakeheads (pisces, Channidae). A biological synopsis and risk assessment.: US Geological survey.
    57. Wee, K. L., & Tacon, A. G. J. (1982). A preliminary study on the dietary protein requirement of juvenile snakehead. Bulletin of the Japanese Society of Scientific Fisheries, 48(10), 1463-1468.
    58. Yamada, J., & Watabe, N. (1979). Studies on fish scale formation and resorption. I. Fine structure and calcification of the scales in Fundulus heteroclitus (Atheriniformes: Cyprinodontidae). Journal of morphology, 159(1), 49-65.
    59. 中華民國自然生態保育協會. 2006. 台灣十大外來入侵物種 (農業委員會林務局).
    60. 吳明峰,吳東傑,林新沛,邵廣昭,婁序平,許富雄,陳建志,陳義雄,黃世仁,趙榮台,鄭錫奇. 2008. 外來種防治教育專刊-動物篇 (社團法人台灣環境資訊協會).
    61. 徐敏杰. 2020. 臺灣本島外來種鵲鴝的繁殖生物學與巢位選擇, 國立臺灣大學.
    62. 朱成德. 1986. 仔鱼的开口摄食期及其饵料综述, 水生生物学报, 10(1), 86-95.
    63. 朱玉蘭,吳珊樺,夏道緣,婁序平,陳芳瑜,陳超仁,黃士元,潘富俊. 2008. 外來種防治教育專刊-植物篇 (社團法人台灣環境資訊協會).
    64. 李冠中. 2012. 南臺灣外來種線鱧 Channa striata 生殖週期與食物組成之探討, 國立高雄師範大學.
    65. 马建波,茅沈丽,梁桂洪,邹记兴. 2012. 杂交鳢仔鱼饥饿试验及不可逆点的确定, 水生态学杂志, 33(3), 90-95.
    66. 黃致中. 2007. 不同溫度對小盾鱧(Channa micropeltes)攝食生態、耗氧、成長及耐受性影響之研究, 國立嘉義大學.
    67. 邵廣昭. 2023. 臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw
    68. Sonnaria, N. A., Yanti, A. H. & Setyawati, T. R. (2015). Aspek Reproduksi Ikan Toman (Channa micropeltes Cuvier) Di Danau Kelubi Kecamatan Tayan Hilir Kabupaten Sanggau, Protobiont, 4(1).

    QR CODE