研究生: |
廖昱旻 Liao, Yu-Min |
---|---|
論文名稱: |
以文字探勘及視覺化技術分析網路評論為基礎之餐廳推薦系統 The Restaurant Recommendation System Based on Text Mining and Visualization Techniques of Google Reviews |
指導教授: |
區國良
Ou, Kuo-Liang 唐文華 Tarng, Wern-Huar |
口試委員: |
王鼎銘
劉奕蘭 |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 學習科學與科技研究所 Institute of Learning Sciences and Technologies |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 社群媒體 、文字探勘 、機器學習 、情緒分析 、推薦系統 、視覺化 |
外文關鍵詞: | Social Media, Text Mining, Machine Learning, Sentiment Analysis, Recommendation System, Visualization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,Google地圖已成為目前成長最快且使用量最大的評論平台,其中,餐廳評論是Google地圖使用者最常查看的評論類別,消費者通常會透過網路評論了解其他消費者對餐廳的評價,以作為選擇餐廳的重要參考依據。然而,隨著評論數量的增加,消費者往往無法有效地過濾出有用的資訊。因此,利用資訊技術幫助人們快速從大量文字中擷取出重點,找到適合的選擇,成為一項熱門的研究。本論文透過文字探勘、機器學習、自然語言處理的技術,分析Google地圖上的餐廳評論數據,結合基於內容的過濾推薦系統,打造評論視覺化互動面板,提供使用者更加直觀地了解餐廳的評價和特點,並幫助使用者快速從大量評論擷取出重點並從中找到適合的餐廳選擇。
Google Maps has become the fastest-growing and most widely used review platform in recent years. Restaurant reviews are the most frequently viewed by Google Maps users. Consumers learn about other consumers’ opinions through online reviews, which is an important evaluation standard for choosing a restaurant. However, with the increase in the number of reviews, consumers are unable to effectively extract useful information. Therefore, how to quickly extract key points from a large amount of text and find suitable choices has become a hot topic. This study analyzes restaurant review data on Google Maps through text mining, machine learning, and natural language processing technologies, combines it with a content-based filtering recommendation system, and creates a review-based visualization dashboard. This dashboard provides users with a more intuitive understanding of restaurant reviews and characteristics, helps users quickly extract key points from many reviews, and finds suitable choices.
Abbe, A., Grouin, C., Zweigenbaum, P., & Falissard, B. (2016). Text mining applications in psychiatry: a systematic literature review. International Journal of Methods in Psychiatric Research, 25(2), 86-100. https://doi.org/https://doi.org/10.1002/mpr.1481
Ananiadou, S., & McNaught, J. (2006). Text mining for biology and biomedicine. Boston, MA.
Dadgar, S. M. H., Araghi, M. S., & Farahani, M. M. (2016, 17-18 March 2016). A novel text mining approach based on TF-IDF and Support Vector Machine for news classification. 2016 IEEE International Conference on Engineering and Technology (ICETECH),
He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464-472. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2013.01.001
Kemp, S. (2023, February 13). DIGITAL 2023: TAIWAN. DataReportal. https://datareportal.com/reports/digital-2023-taiwan
Koh, J. X., & Liew, T. M. (2022). How loneliness is talked about in social media during COVID-19 pandemic: Text mining of 4,492 Twitter feeds. Journal of Psychiatric Research, 145, 317-324. https://doi.org/https://doi.org/10.1016/j.jpsychires.2020.11.015
Kumar, S., Kar, A. K., & Ilavarasan, P. V. (2021). Applications of text mining in services management: A systematic literature review. International Journal of Information Management Data Insights, 1(1), 100008. https://doi.org/https://doi.org/10.1016/j.jjimei.2021.100008
Li, P.-H., Fu, T.-J., & Ma, W.-Y. (2020). Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 8236-8244. https://doi.org/10.1609/aaai.v34i05.6338
Lilleberg, J., Zhu, Y., & Zhang, Y. (2015, 6-8 July 2015). Support vector machines and Word2vec for text classification with semantic features. 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC),
Mathayomchan, B., & Taecharungroj, V. (2020). “How was your meal?” Examining customer experience using Google maps reviews. International Journal of Hospitality Management, 90, 102641. https://doi.org/https://doi.org/10.1016/j.ijhm.2020.102641
Murphy, R. (2020, December 9). Local Consumer Review Survey 2020. Brightlocal. https://www.brightlocal.com/research/local-consumer-review-survey-2020/
Murphy, R. (2019, December 11). Local Consumer Review Survey 2019. Brightlocal. https://www.brightlocal.com/research/local-consumer-review-survey-2019/
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. https://doi.org/https://doi.org/10.1016/j.asej.2014.04.011
Meesad, P., & Li, J. (2014, 8-11 Dec. 2014). Stock trend prediction relying on text mining and sentiment analysis with tweets. 2014 4th World Congress on Information and Communication Technologies (WICT 2014),
Nausheen, F., & Begum, S. H. (2018, 19-20 Jan. 2018). Sentiment analysis to predict election results using Python. 2018 2nd International Conference on Inventive Systems and Control (ICISC),
Oyebode, O., Ndulue, C., Adib, A., Mulchandani, D., Suruliraj, B., Orji, F. A., Chambers, C. T., Meier, S., & Orji, R. (2021). Health, Psychosocial, and Social Issues Emanating From the COVID-19 Pandemic Based on Social Media Comments: Text Mining and Thematic Analysis Approach. JMIR Med Inform, 9(4), e22734. https://doi.org/10.2196/22734
Paget, S. (2023, February 7). Local Consumer Review Survey 2023. Brightlocal. https://www.brightlocal.com/research/local-consumer-review-survey/
Pitman, J. (2022, January 26). Local Consumer Review Survey 2022. Brightlocal. https://www.brightlocal.com/research/local-consumer-review-survey-2022/
Palad, E. B. B., Tangkeko, M. S., Magpantay, L. A. K., & Sipin, G. L. (2019, 25-27 Sept. 2019). Document Classification of Filipino Online Scam Incident Text using Data Mining Techniques. 2019 19th International Symposium on Communications and Information Technologies (ISCIT),
Padró, M., & Padró, L. (2005). A named entity recognition system based on a finite automata acquisition algorithm. Procesamiento del Lenguaje Natural, 35, 319-326.
Ratriatmaja, D. P., & Projo, N. W. K. (2021). Do Tourist Attraction Objects Implement Health Protocols? Analysis of Tourist Attraction Object in East Java Province Using Google Maps Review. Proceedings of The International Conference on Data Science and Official Statistics,
Reddy, S., Nalluri, S., Kunisetti, S., Ashok, S., & Venkatesh, B. (2019). Content-Based Movie Recommendation System Using Genre Correlation. In S. C. Satapathy, V. Bhateja, & S. Das, Smart Intelligent Computing and Applications Singapore.
Schober, M. F., Pasek, J., Guggenheim, L., Lampe, C., & Conrad, F. G. (2016). Social Media Analyses for Social Measurement. Public Opinion Quarterly, 80(1), 180-211. https://doi.org/10.1093/poq/nfv048
Shim, J.-G., Ryu, K.-H., Lee, S. H., Cho, E.-A., Lee, Y. J., & Ahn, J. H. (2021). Text Mining Approaches to Analyze Public Sentiment Changes Regarding COVID-19 Vaccines on Social Media in Korea. International Journal of Environmental Research and Public Health, 18(12), 6549. https://www.mdpi.com/1660-4601/18/12/6549
Singla, Z., Randhawa, S., & Jain, S. (2017, 3-5 July 2017). Statistical and sentiment analysis of consumer product reviews. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Taylor, C. (2021, May 21). Structured vs. Unstructured Data. Datamation. https://www.datamation.com/big-data/structured-vs-unstructured-data/
Tewari, A. S., Kumar, A., & Barman, A. G. (2014, 21-22 Feb. 2014). Book recommendation system based on combine features of content based filtering, collaborative filtering and association rule mining. 2014 IEEE International Advance Computing Conference (IACC),
Wijk, J. J. v. (2005, 23-28 Oct. 2005). The value of visualization. VIS 05. IEEE Visualization, 2005.,
Yuen, M. (2022, May 11). Social Media Users in the World (2021-2025). Insider Intelligence. https://www.insiderintelligence.com/charts/social-media-users-worldwide-per-network/
Ye, Q., Law, R., Gu, B., & Chen, W. (2011). The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings. Computers in Human Behavior, 27(2), 634-639. https://doi.org/https://doi.org/10.1016/j.chb.2010.04.014