簡易檢索 / 詳目顯示

研究生: 夏文茵
Wen-Yin Hsia
論文名稱: 一維推廣Ambrosetti-Brezis-Cerami問題解集合的結構
The Structure of the Solution Set of a Generalized Ambrosetti-Brezis-Cerami Problem in One Space Variable
指導教授: 王信華博士
Shin-Hwa Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2003
畢業學年度: 92
語文別: 英文
論文頁數: 20
中文關鍵詞: 解集合多重正解分支凹凸非線性時間圖
外文關鍵詞: solution set, exact multiplicity, positive solution, bifurcation, concave-convex nonlinearity, time map
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們探討非線性兩點邊界值問題的解集合的結構,當滿足一些條件的時候.在(A1)-(A4)的條件之下,我們可以證明存在某一個正數使得這個問題當介在0跟正數之間會有兩個正解,當等於正數之時只有一個正解,當大於正數之時會沒有正解.


    1. Introduction……………………….. 2 2. Main Results………………………. 4 3. Lemmas……………………………11 4. Proofs of Main Results…………….12 References……………………………19

    [1]I. Addou, A. Benmezai, S. M. Bouguima and M. Derhab, Exactness results for generalized Ambrosetti-Brezis-Cerami problem and related one-dimensional elliptic equations, Electron. J. Diff. Eqns.(2000), 1-34.
    [2]A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal.{122} (1994), 519-543.
    [3]M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal.{52} (1973), 161--180.
    [4]B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.{68} (1979), 209-243.
    [5]P. Korman, On uniqueness of positive solutions for a class of semilinear equations,Discrete Contin. Dyn. Syst.8 (2002), 865--871.
    [6]P. Korman and J. Shi, Instability and exact multiplicity of solutions of semilinear equations, Electron. J. Diff. Eqns. Conf., 5 (2000), 311--322.
    [7]T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J.{20} (1970), 1-13.
    [8]J. Sanchez and P. Ubilla, One-dimensional elliptic equation with concave and convex nonlinearities, Electron. J. Diff. Eqns.{2000} (2000), 1-9.
    [9]J. Shi, private communications.
    [10]M. Tang, Exact multiplicity for semilinear Dirichlet problem involving concave and convex nonlinearities, Proc. Royal Soc. Edinburgh, Sect. A., {133} (2003), 705--717.
    [11]S.-H. Wang and T.-S. Yeh, On the exact structure of positive solutions of an Ambrosetti-Brezis-Cerami problem and its generalization in one space variable, {Differential Integral Equations, }in press.
    [12]S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a p-Laplacian dirichlet problem and their applications, J. Math. Anal. Appl.,in press.
    [13]S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, to appear in J. Math. Anal. Appl. (under minor revisions).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE