研究生: |
張世熙 Chang, Shih-His |
---|---|
論文名稱: |
利用雷射光鉗探討膠原蛋白黏彈度受紫外光照射的影響 Using optical tweezers to study the effect on viscoelasticity of collagen by UV irradiation |
指導教授: |
吳見明
Wu, Chien-ming |
口試委員: |
楊自森
Yang, Zi-Sen 崔豫笳 Cui, Yu-Jia |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 黏彈模數 、膠原蛋白 、雷射光鉗 、微流變學 |
外文關鍵詞: | viscoelastic moduli, collagen, optical tweezers, microrheology |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1970 年,Arthur Ashkin 成功利用雷射光捕捉粒子之後雷射光鉗便不斷創新發展與應用,不僅常用於一個或多個粒子的捕獲和操縱,也可以藉由微流變學的方法用來量測複雜流體的特性。
膠原蛋白是一種天然生醫材料,具有良好的生醫功能特性,可促進軟組織無疤痕形成的修復傷口癒合。然而含膠原蛋白的製品仍須經過滅菌處理,處理過程可能會造成膠原蛋白結構損害,從而降低其生物活性與功能。我們使用波長為254nm紫外光進行滅菌,並由雷射光鉗研究膠原蛋白在滅菌過程黏彈特性的變化,藉由其變化來得知滅菌過程中對於膠原蛋白的損害程度。
首先我們使用蒸餾水作為牛頓流體測試克拉默斯克朗尼希(Kramers–Kronig)轉換式,然後將膠原蛋白配置成濃度0.3(mg/ml)的複合溶液(complex flurds)並加入直徑2μm的聚苯乙烯微球(polystyrene bead),接著使用雷射光鉗捕捉聚苯乙烯微球量測膠原蛋白複雜溶液在254nm紫外光照射下黏彈模數的變化。
量測的結果,樣品溶液皆具有黏彈性的行為,並根據不同的紫外線照射時間改變其黏性及彈性貢獻,其膠原蛋白黏彈度隨著照射紫外光劑量的提高而下降。
本研究使用雷射光鉗與微流變學結合的方法量測膠原蛋白的特性。相對於傳統流變儀的量測方法,使用雷射光鉗與微流變學結合的方法擴大了採樣頻率範圍,也減少了樣品耗材的成本。本實驗量測出膠原蛋白經過照射滅菌劑量後黏彈特性顯著的改變,其彈性模數下降約7倍,黏度下降約5倍。另外我們發現膠原蛋白經過紫外光照射後,黏彈度與凝血功能下降趨勢有相關性。我們推測膠原蛋白可能因為化學鍵被紫外光能量打斷而影響了黏彈特性與凝血功能。本實驗確立了膠原蛋白經紫外光照射滅菌處理過程中,黏彈度下降的趨勢,此結果可以應用在醫學美容或是復健關節炎填充物的研究上。
Optical tweezers (OT) have been widely applied in various fields ever since Arthur Ashkin successfully pioneered the optical trapping process with laser beam in the 1970s. OT can be utilized to trap and manipulate single or multiple particles, as well as to investigate the mechanical properties of complex fluids through microrheological approach.
Collagen is a natural biomaterial; its biological properties can help prevent scarring during all stages of wound healing process in soft tissues. However, collagen products have to go through sterilization in the processing steps, which can cause structural damage of collagen, and in turns, undermine its bioactive and functional properties. In this paper, optical tweezers are used to study the viscoelasticity of collagen under UV-254 nm irradiation, and to gauge the damaging level of sterilization on collagen.
In the experiment, we first test the Kramers-Kroning procedure using distilled water as Newtonian fluid. Next, 2-μm polystyrene beads are placed in the collagen solution at a polymeric concentration of 0.3 mg/ml. Then, OT are employed to trap and measure the viscoelastic moduli of the collagen polymeric solutions under UV-254 nm irradiation.
Our results indicated that all solutions exhibit viscoelastic behavior. However, different exposure time of UV contributes to the variation in viscous and elastic responses. The viscoelasticity of the collagen goes down as the dosage of UV irradiation rises. Collagen’s elastic modulus and the viscosity decrease about 7 and 5 times, respectively, by sterilization process.
We combined optical tweezers and microrheological technique to measure the viscoelastic properties of collagen solutions. This combination enabled us to extend the range of frequencies and reduced the cost of samples. In the experiment, the viscoelasticity of collagen was measured after a series of irradiations as the sterilization process. We suggested that collagen exposured to UV irradiation may lead to breakage of chemical bonds, thus compromised viscoelasticity and clotting ability. This study concluded the downward viscoelasticity of collagen by UV irradiation in sterilization process. Our results can be used on cosmetology and arthritis rehabilitation.
1.Ashkin, A., Acceleration and Trapping of Particles by Radiation Pressure.Phys. Rev. Lett., 1970. 24: p. 1-4.
2.James, R.S., Direct observation of the myosin-Va power stroke and its reversal. Nature Structural & Molecular Biology., 2010.17(5): p. 590-595.
3.Wang, M. D., et al., Stretching DNA with optical tweezers. Biophys J., 1997. 72(3): p. 1335-46.
4.Uemura, S. and Ishiwata, S., Loading direction regulates the affinity of ADP for kinesin. Nat Struct Biol, 2003. 10(4): p. 308-11.
5.Bormuth, V., et al., Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science, 2009. 325(5942): p. 870-3.
6.Sims, P.A. and Xie, X.S., Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem, 2009. 10(9-10): p. 1511-6.
7.Howard, J., Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., 2001. Chap. 15.
8.Balland, M., Richert, A. and Gallet, F., The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts. Eur Biophys J, 2005. 34(3): p. 255-61.
9.Visscher, K., Schnitzer, M.J. and Block, S.M., Single kinesin molecules studied with a molecular force clamp. Nature, 1999. 400(6740): p. 184-9.
10.Marina P.d.M.M., Visicoelasticity of the human red blood cell. Am J Physiol Cell Physiol., 2007. 293:p. 597-605.
11.Mills, J.P., et al., Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst, 2004. 1(3): p. 169-80.
12.American National Standard,. Guideline for Grmma Radiation Sterilization. AAMI Recommended Practice, 1991.ANSI / AAMI ST32.
13.Pesce, G., et al., Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements. Journal of Optics a-Pure and Applied Optics, 2009. 11(3).
14.Nemet, B.A. and Cronin-Golomb, M., Measuring microscopic viscosity with optical tweezers as a confocal probe. Appl Opt, 2003. 42(10): p. 1820-32.
15.Raghu, A. and Ananthamurthy, S., Construction of an optical tweezer for nanometer scale rheology. Pramana-Journal of Physics, 2005. 65(4): p. 699-705.
16.Gittes, F., et al., Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations. Physical Review Letters, 1997. 79(17): p. 3286-3289.
17.Pesce, G., et al., Optical Tweezers as a tool for microrheology of simplex and complex fluids. proceedind of SPIE, 2004. 5514.
18.Nemet, B.A., Shabtai, Y. and Cronin-Golomb, M., Imaging microscopic viscosity with confocal scanning optical tweezers. Opt Lett, 2002. 27(4): p. 264-6.
19.Mason, T.G. and Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett, 1995. 74(7): p. 1250-1253.
20.Yao, A., et al., Microrheology with optical tweezers. Lab on a Chip, 2009. 9(17): p. 2568-2575.
21.Buosciolo, A., P. G., Sasso, A., New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Optics Communications, 2004. 230.
22.Liu , T.Y., Chen, S.Y., Liu. Inf
luence of the aspect ratio of bioactive nanofillers on rheological behavior of PMMA-based orthopedic materials. Journal of biomedical materials research, 2004. 71: p.116-122.
23.Shih, J.C., Hsu, S.Y., Chao L.J. and Chin, T.S., The magnetostriction of Tb(Fe0.9MnxAl0.1-x)2 alloys. J. Appl. Phys, 2000. 88: p.3541-3544.
24.Fang, J.S., Jian, M.R., Chin, T.S., Zhang H.W. and Shen, B.G., Magnetic viscosity of NeFe11TiNx thin films. Jpn. J. Appl. Phys, 2000. 39(1): p. 496- 497.
25.Chung, R.J., Chin, T.S., Huang, C.W., Lin, P.C., Hsu T.J. and Chou, F.I., Bone-cement based on tricalcium silicate. Key Eng. Mater, 2003.p.337-340.
26.Liu Chun Yi., Effects of UV sterilization and additives on Bioactivity of Collagen. NCKU, 2004.
27.Chvapil, M., Collagen sponge: theory and practice of medical applications. J. Biomed Mater Res., 1977.11: p. 721-741.
28.Olde Damink, L.H.H., Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen. J Biomed Mater Res., 1995. 29: p,149-155.
29.Wang S.M.Kuo. et al., Plasma-modified nylon meshes as supports for cell culture. Art.cells,blood subs., and immob. Biotech, 1997.25(6), 551-562.
30.Sionkowska, A., Kamińska, A., Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. International Journal of Biological Macromolecules, 1999. 24(4): p. 337–340.
31.Takeshi Nagai., Nobutaka Suzuki., Isolation of collagen from fish waste material — skin, bone and fins. Food Chemistry, 2000. 68(3): p.277–281.
32.Leikina, E., Mertts, M. V., Kuznetsova, N. and Leikin, S., Type I collagen is thermally unstable at body temperature. PNAS, 2002. 99(3): p.1314–1318.
33.Yoko Shitamichi, M.I., Yasuyuki Kimura., Mechanical properties of a giant liposome studied using optical tweezers. Chemical Physics Letters, 2009.
34.Grigorenko, A.N., et al., Nanometric optical tweezers based on nanostructured substrates. Nature Photonics, 2008. 2(6): p. 365-370.
35.Bormuth, V., et al., Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science, 2009. 325(5942): p. 870-3.
36.Sims, P. A., et al., Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem, 2009. 10(9-10): p. 1511-6.
37.陳盈君“利用自組裝雷射光鉗系統探討紫杉醇對免疫細胞RAW264.7黏度的影響”NTHU,2010年
38.Wang, J., et al., Development and Applications of an Optical Tweezer-based Microrheometer: Case Studies of Biomaterials and Living Cells. SPIE Digital Library, 2007. 6441: p. 1-11.
39.Brau, R.R., et al., Passive and active microrheology with optical tweezers.Journal of Optics a-Pure and Applied Optics, 2007. 9(8): p. S103-S112.
40.Raghu, A. and Ananthamurthy, S., Construction of an optical tweezer for nanometer scale rheology. Pramana-Journal of Physics, 2005. 65(4): p. 699-705.
41.Mason, T.G. and Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett, 1995. 74(7): p. 1250-1253.
42.Pesce, G., et al., Optical Tweezers as a tool for microrheology of simplex and complex fluids. proceedind of SPIE, 2004. 5514.
43.Sasso, G.P.a.A., Viscosity measurements on micron-size scale using optical tweezers. Review of scientific instruments, 2005. 76.
44.Mengistu, M., Krentz, L.L. and Ou-Yang, H.D., Optical Tweezers as a Sensor for Intracellular Mechanical Properties. 2005.
45.Friess, W., Review article:collagen-biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutic, 1998. 45: p. 113-136.
46.吳至中“滅菌相關標準解析之一:高壓滅菌鍋” 醫療器材報導雙月刊2000年 p. 37-29.
47.黃秋菊“追求穩定性: 加馬射線滅菌-材質上的考量”核能天地1993年p. 18-19.
48.林宗堯“有效的醫療消毒方式: 電子束消毒滅菌處理”核能天地1994年p. 40-43.
49.American National Standard., Sterilization of health care products – Requirements for validation and outine control – Radiation sterilization, ASNI / AAMI / ISO,1995.
50.陳明莉“清潔加工處理法: 淺談國內輻射照射醫療器材之現況”核能天地1993年p. 10-17.
51.USP XX NF., Sterilization. In: The United States Pharmacopoeia, Twentieth revision and the National Formulary, Fifteenth edition. New York, United States Pharmacopeial Convention Inc., 1980. p. 1037-1038.
52.Kaminska, A. and Sionkowska, A., Effect of UV radiation on the infrared spectra of collagen. Polymer Degradation and Stability, 1996.1: p. 19-26.
53.Sionkowska, A., Photochemical transformations in collagen in the presence of melanin. Journal of Photochemistry and Photobiology A:Chemistry, 1999.124: p. 91-94.
54.Laminska, A. and Sionkowska, A., The effect of UV radiation on the values of thermal parameters of collagen containing β-carotene. Polymer Degradation and Stability, 1990. 65: p. 87-90.
55.Hanaealt, P. C., Essentials of Molecular Biology. Jones and Bartlett Publishers, 1993. P. 145-157.
56.Kowalski, W. J., Ultraviolet Germicidal Irradiation Handbook - UVGI for Air and Surface Disinfection. Springer, New York, 2009.
57.Ashkin, A., et al., Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 1986. 11: p. 3.
58.Dholakia, K., Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular, and Optical Physics, 2008. 56: p.261–337.
59.Titushkin, I. and Cho, M., Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophysical Journal, 2006. 90(7): p. 2582-2591.
60.溫偉源、陸駿逸“微流變學”物理雙月刊2005年(廿七卷三期) p.479-482.
61.Wen-Hwar, K., Study on Magnetorheological Damper of Flow Mode. 技術學刊2011年(26卷四期) p. 17-23.
62.Berg-Sorensen , K., Flyvbjerg, H., Power spectrum analysis for optical tweezers . Rev. Sci. Instrum, 2004. 75: p. 594.
63.Neuman, K.C. and Block, S.M., Optical trapping. Rev Sci Instrum, 2004. 75(9): p. 2787-809.
64.Pesce, G., et al., Blinking Optical Tweezers for microrheology measurements of weak elasticity complex fluids. Optics express, 2010.18(3): p.2116-2126.
65.Tuckerman, M., Fluctuation-Dissipation Theorem (FDT). NGL, 2007.
66.Torikai, A. and Shibata, H., Effect of ultraviolet radiation on photo-degradation of collagen. Journal of Biomedical Materials Research , 1999. 73: p.1259-1265.
67.Watanabe, K. and Koyama, Y. I., Adhesion of macrophages on collagen irradiated with ultraviolet light. Journal of Biomaterials Science-polymer Edition, 1999.10(3): p. 351-361.
68.Lambert, J. B., Shurvell, H. F., Lightne r D. A., and Cooks, R.G., Organic Structural Spectroscopy. Prentice Hall,1998. P. 175-249.
69.Bennett W. and Garrison, W. M., Production of amide groups and ammonia in the radiolysis of aqueous solutions of protein. Nature, 1959.183: p. 889.
70.Jayko, M. E. and Garrison, W. M., Formation of C=O bonds in the radiation induced oxidation of protein in aqueous system. Nature, 1958. 181: p. 413-414.
71.Kato, Y., Uchida, K. and Kawakishi, S., Oxidative degradation of collagen and its model peptide by ultraviolet irradiation. Journal of Agricultural and Food Chemistry, 1992. 40(3): p. 373-379.
72.Vermeulen, K. C., et al., Optical trap stiffness in the presence and absence of spherical aberrations. Appl Opt, 2006. 45(8): p. 1812-9.
73.Korson, L., Drost-Hansen, W. and Millero, F. J., Viscosity of Water at Various Temperatures. J. Phys.Chem, 1969.
74.Dorsey N.E., Viscosity of water taken from Properties of Ordinary Water-Substance. New York, 1940. p. 184.
75.Blanksby, S. J., Ellison, G. B., Bond Dissociation Energies of Organic Molecules. Acc. Chem. Res., 2003. 36(4): p.255–263.
76.Tolic-Norrelykke, I. M., et al., Matlab program for precision calibration of optical tweezers. Computer Physics Communications, 2004. 159: p.225-240.
77.葉時孟、洪啟智、陳鴻鈞“尿毒出血之診斷與治療新進展”內科學誌2011年(22期)p.40-47.
78.Hoffbrand A. V. and Pettit, J. E., Essential Haematology. Blackwell Sci. Pub., 1994. p. 299-317.
79.Kwaan H. C. and Samama, M. M., Clinical Thrombosis. CRC Press Inc., 1991. p.473-495.
80.Trentham, D.E.,et al., Effects of oral administration of type II collagen on rheumatoid arthritis. Science, 1993. 261(5129): p. 1727-1730.
81.Martha, L.,et al., A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis. Arthritis & Rheumatism , 1996. 39(4):p. 623-628.
82.Nicolaos, A.,et al., Antibodies to native and denatured collagens in sera of patients with rheumatoid arthritis. Arthritis & Rheumatism, 1976.19(3): p. 613–617.
83.Liu, B., Xu, Z., Lyu, R., Experimental and clinical observationon wrinkle correction by medical cosmetic collagen injec-tion. Chung Kuo Li Hsuek Ko Hsueh Yuan Hsueh Pao,1994.16(3):p.197.