研究生: |
盧俊佑 Lu, Jyun You |
---|---|
論文名稱: |
邊緣終結效應於高功率氮化鎵 p-i-n二極體之研製 Effects of Edge Terminations for High Power GaN p-i-n Diodes |
指導教授: |
吳孟奇
Wu, Meng Chyi 何充隆 Ho, Chong Long |
口試委員: |
謝明勳
黃雍勛 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 氮化鎵 、p-i-n二極體 、準垂直式結構 、邊緣終結 、巴利加值 |
外文關鍵詞: | GaN, p-i-n diode, quasi-vertical structure, edge termination, Baliga’s figure of merit (BFOM) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本論文中,將高功率氮化鎵p-i-n二極體利用金屬有機化學氣相沉積法(MOCVD)成長於圖形化藍寶石基板(PSS)上,製作出準垂直式氮化鎵p-i-n二極體。當操作於順向偏壓下,在高階注入時會有電導調變現象而導致有較低的順向串聯電阻,當施加逆向偏壓時,氮化鎵p-i-n二極體的本質層具有耐壓能力,故可以承受高電壓。
利用不同磊晶晶圓之本質層濃度及厚度來製程元件,於順偏下,本質層厚度較薄與濃度較高之磊晶結構,在相同的元件結構與製程方法下,具有較低的順向電壓及特徵導通電阻。為了提高元件逆向偏壓特性,利用邊緣終結方法的二階平台型結構、場板結構和整合二階平台型與場板結構來降低漏電流與提高崩潰電壓。而在磊晶結構之本質層5微米和濃度1×1016 cm-3之磊晶片及整合二階平台型與場板結構有最低的特徵導通電阻0.59 mΩ-cm2 及超過800 V的崩潰電壓,而得到最佳巴利加值(Baliga’s Figure of Merit, BFOM)大於1 GW/cm2。最後,鍍鋁於平台結構層表面以遮蔽元件於順向偏壓時所發出之紫外光,避免紫外光對封裝樹脂的破壞與脆化,進而達到元件的穩定性。
In this study, high power GaN p-i-n diodes are grown on pattern sapphire substrates (PSSs) by metal organic chemical vapor deposition (MOCVD) and fabricated to quasi-vertical structure. The intrinsic layer (i-layer) has conductivity modulation in high level injection resulting in decreasing the forward series resistances at forward bias. When a negative bias is applied, i-layer of GaN p-i-n diode could support high reverse voltage.
Using the concentration and thickness of i-layer with different epitaxial wafers fabricates devices. The thinner thickness and higher concentration of the i-layer are, the lower forward voltage (VF) and specific on-resistance (RONA) will be. In order to improve reverse characteristics of device, using two-step, field plate and integration of two-step and field plate structures with edge terminations can reduce the leakage current and enhance the breakdown voltage at reverse bias. The thickness 5 μm and concentration 1×1016 cm-3 of i-layer with integration of two-step and field plate structure has the lowest specific on-resistance of 0.59 mΩ-cm2 , and breakdown voltage is over 800 V. The corresponding Baliga’s Figure of Merit (BFOM) is over 1 GW/cm2. Finally, depositing aluminum along surface of mesa shades the ultraviolet from device at forward bias, and avoiding the epoxy of package be broken to achieve better reliability of device.
[1] 張庭輔、黃智方,"氮化鎵功率元件簡介,"電子資訊,第二十卷第一期,2014
[2] Rüdiger Quay, "Gallium Nitride electronics," Springer, 2008
[3] B. Jayant Baliga, "Fundamentals of power semiconductor devices," Springer, 2008
[4] Jian-Jang Huang, Hao-Chung Kuo, Shyh-Chiang Shen, "Nitride semiconductor light-emitting diodes (LEDs) ― materials, performance and applications," Woodhead Pub Ltd, 2013
[5] Wei Lu, David Aplin, Arthur R. Clawson, and Paul K. L. Yu , "Effects of the gas ambient in thermal activation of Mg-doped p-GaN on Hall effect and photoluminescence, " J. Vac. Sci. Technol. A vol.31, no1, 011502-1 – 011502-5, Nov 2012
[6] A. P. Zhang, G. T. Dang, F. Ren, H. Cho, K. P. Lee, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, "Comparison of GaN p-i-n and Schottky rectifier performance," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 407-411, Mar 2001.
[7] Rongming Chu, C. S. Suh, M. H. Wong, Nicholas Fichtenbaum, David Brown, Lee McCarthy, Stacia Keller, Feng Wu, James S. Speck, and Umesh K. Mishra, "Impact of CF4 plasma treatment on GaN," IEEE Electron Devices, vol. 28, no. 9, pp. 781-783, September 2007
[8] J. T. Torvik, J. I. Pankove, and B. J. Van Zeghbroeck, "Comparison of GaN and 6H-SiC p-i-n photodetectors with excellent ultraviolet sensitivity and selectivity," IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1326-1331, Jul 1999.
[9] J. G. Yang and K. Yang, "GaN-based pin diodes for microwave switching IC applications," Electron. Lett., vol. 48, no. 11, pp. 650-652, May 2012.
[10] Y. F. Chang, C. L. Liao, B. S. Zheng, J. Z. Liu, C. L. Ho, K. C. Hsieh, and M. C. Wu, "Using two-step mesa to prevent the effects of sidewall defects on the GaN p-i-n diodes," IEEE Journal of Quantum Electronics, vol. 51, no. 10, Oct 2015.
[11] W. J. Wang, C. L. Liao, Y. F. Chang, Y. L. Lee, C. L. Ho, and M. C. Wu, "DLTS Analyses of GaN p-i-n diodes grown on conventional and patterned sapphire substrates," IEEE Electron Device Lett., vol. 34, no. 11, pp. 1376-1378, Nov 2013.
[12] B. S. Shelton, T. G. Zhu, D. J. H. Lambert, and R. D. Dupuis, "Simulation of the electrical characteristics of high-voltage mesa and planar GaN Schottky and p-i-n rectifiers," IEEE Trans. Electron Devices, vol. 48, no. 8, pp. 1498-1502, Aug 2001.
[13] B.S. Zheng, P.Y. Chen, C.J. Yu, Y.F. Chang, C.L. Ho, M.C. Wu, and K.C. Hsieh, "Suppression of current leakage along mesa surfaces in GaN-based p-i-n diodes," IEEE Electron Device Lett., vol. 36, no. 9, pp. 932-934, Sep 2015.
[14] J. B. Limb, D. Yoo, J. H. Ryou, S. C. Shen, and R. D. Dupuis, "Low on-resistance GaN pin rectifiers grown on 6H-SiC substrates," Electron. Lett., vol. 43, no. 6, pp. 366-368, Mar 2007.
[15] X. A. Cao, H. Lu, S. F. LeBoeuf, C. Cowen, S. D. Arthur, and W. Wang, "Growth and characterization of GaN PiN rectifiers on free-standing GaN," Appl. Phys. Lett., vol. 87, no. 5, Aug 2005.
[16] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, and R. D. Dupuis, "High performance GaN pin rectifiers grown on free-standing GaN substrates," Electron. Lett., vol. 42, no. 22, pp. 1313-1314, Oct 2006.
[17] Y. Yoshizumi, S. Hashimoto, T. Tanabe, and M. Kiyama, "High-breakdown-voltage pn-junction diodes on GaN substrates," J. Crystal Growth, vol. 298, pp. 875-878, Jan 2007.
[18] Y. Hatakeyama, K. Nomoto, N. Kaneda, T. Kawano, T. Mishima, and T. Nakamura, "Over 3.0 GW/cm2 figure-of-merit GaN p-n junction diodes on free-standing GaN substrates," IEEE Electron Device Lett., vol. 32, no. 12, pp. 1674-1676, Dec 2011.
[19] Y. Hatakeyama, K. Nomoto, A. Terano, N. Kaneda, T. Tsuchiya, T. Mishima, and T. Nakamura, "High-breakdown-voltage and low-specific-on-resistance GaN p-n junction diodes on free-standing GaN substrates fabricated through low-damage field-plate process," Jpn. J. Appl. Phys., vol. 52, no. 2, Feb 2013.
[20] I. C. Kizilyalli, A. P. Edwards, H. Nie, D. Disney, and D. Bour, "High voltage vertical GaN p-n diodes with avalanche capability," IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3067-3070, Oct 2013.
[21] T.T. Kao, J. Kim, Y.C. Lee, M. H. Ji, T. Detchprohm, R. D. Dupuis, and S. C. Shen, “Homojunction GaN p-i-n rectifiers with ultra-low on-state resistance,” in CS MANTECH Conf. Dig., 2014, pp. 157-160.
[22] I. C. Kizilyalli, A. P. Edwards, O. Aktas, T. Prunty, and D. Bour, "Vertical power p-n diodes based on bulk GaN," IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 414-422, Feb 2015.
[23] I. C. Kizilyalli, T. Prunty, and O. Aktas, “4-kV and 2.8-mΩ-cm2 vertical GaN p-n diodes with low leakage currents,” IEEE Electron Device Lett., vol. 36, no. 10, pp. 1073–1075, Oct. 2015
[24] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, and F. Ren, "Inductively coupled plasma-induced etch damage of GaN p-n junctions," J. Vac. Sci. Technol. A, vol. 18, no. 4, pp. 1139-1143, Jul-Aug 2000.
[25] T.-T. Kao, J. Kim, Y.-C. Lee, M.-H. Ji, T. Detchprohm, R. D. Dupuis, and S.-C. Shen, “Homojunction GaN p-i-n rectifiers with ultra-low on-state resistance,” in Proc. Int. Conf. Compound Semiconductor Manuf. Technol. (CS MANTECH), pp. 157–160, 2014
[26] Hiroshi Ohta, Naoki Kaneda, Fumimasa Horikiri, Yoshinobu Narita, Takehiro Yoshida, Tomoyoshi Mishima, and Tohru Nakamura, "Vertical GaN p-n junction diodes with high breakdown voltages over 4 kV," IEEE Electron Device Letters, vol. 36, no. 11, pp. 1180-1182, Nov 2015
[27] Z. Hu, K. Nomoto, B. Song, M. Zhu, M. Qi, M. Pan, X. Gao, V. Protasenko, D. Jena, and H. G. Xing, “Near unity ideality factor and Shockley–Read–Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown,” Appl. Phys. Lett., vol. 107, no. 24, pp. 243501, Dec 2015
[28] K. Nomoto, Z. Hu, B. Song, M. Zhu, M. Qi, R. Yan, V. Protasenko, E. Imhoff, J. Kuo, N. Kaneda, T. Mishima, T. Nakamura, D. Jena, and H. G. Xing, “GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 mΩcm2: a record high figure-of-merit of 12.8 GW/cm,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), pp. 9.7.1–9.7.4, Dec 2015
[29] S. K. Honga, T. Yao, B. J. Kim, S. Y. Yoon, and T. I. Kim, “Origin of hexagonal-shaped etch pits formed in (0001) GaN films,” Appl. Phys. Lett., vol. 77, no. 1, pp. 82-84, Jul 2000