簡易檢索 / 詳目顯示

研究生: 葉人祥
Ye, Ren-Siang
論文名稱: 邁向高重複率之超快瞬態吸收光譜系統
Towards high repetition rate ultrafast transient absorption spectroscopy
指導教授: 楊尚達
Yang, Shang-Da
口試委員: 朱立岡
Chu, Li-Kang
羅志偉
Luo, Chih-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 65
中文關鍵詞: 高重複率高時間解析度超寬連續譜瞬態吸收光譜學
外文關鍵詞: high repetition rate, high time resolution, octave spectrum, transient absorption spectrum
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瞬態吸收光譜學 (transient absorption spectroscopy, TAS) 為結合光學及化學的跨領域研究。可藉由觀察材料中的電子隨時間演變的過程,再經由光學及化學相關的分析,得到材料的電子遷移率等等的資訊。而用高重複率量測有許多好處,不僅可以提升訊號的信噪比,並可以大幅縮短量測的時間。而本篇文章中使用Prof. Pi-Tai Chou(周必泰)’s group 提供的[Pt(py-fpm)2] (4H) 演示我們的瞬態吸收光譜系統時間解析的能力。[Pt(py-fpm)2] (4H)是一個在近紅外光波段具有良好的發光效率的新穎材料,為了要更全貌的了解 [Pt(py-fpm)2] (4H),我們對它作一系列的瞬態吸收光譜的量測。
    我們使用了摻鐿光纖雷射放大器為初始雷射,提供的脈衝寬度為190 fs、脈衝能量為800 μJ、重複率為3.125 kHz。透過重複路徑多重薄片展頻技術(DPMPC)展頻及壓縮後,可以得到約5 fs、147 μJ的泵浦(pump)與偵測(probe)脈衝。而probe脈衝在透過線性位移平台改變與pump脈衝之間的時間延遲後,量測出瞬態吸收光譜圖。我們發現 [Pt(py-fpm)2] (4H) 具有33〖 cm〗^(-1) 的緩慢振動,驗證了此材料打破能係定律(energy gap law)的原因。除此之外,我們也觀察了pump以不同的脈衝寬度及不同的激發波長對其吸收光譜的影響,由此驗證瞬態吸收光譜學量測上時間解析度的重要性。


    Transient absorption spectroscopy (TAS) produced by a combination of optics and chemistry. Observe the kinetic of electrons in the material, and then obtain information such as the mobility of the material through optical and chemical analysis. TAS measurement with high repetition rate has some advantages, not only can improve the signal-to-noise ratio of the signal, but also can greatly shorten the measurement required time. The [Pt(py-fpm)2] (4H), which provide by Prof. Pi-Tai Chou(周必泰)’s group, is used to demonstrate the time-resolving capability of our TAS system. This material has good luminous efficiency in the near-infrared light region. In order to understand [Pt(py-fpm)2] (4H) more comprehensively, we make a series of transient absorption spectroscopic experiments on it.
    We use a ytterbium-doped fiber laser amplifier as the initial light source, and the input pulse duration is 190 fs, the pulse energy is 800 μJ, and the repetition rate is 3.125 kHz. After double-pass multiple-plate continuum (DPMPC) broadens the spectrum and pulse compression, the pump and probe both have about 5 fs, 147 μJ pulses. The probe changes the delay between the pump and the probe through a linear translation stage and measures the transient absorption spectrum. We found that [Pt(py-fpm)2] (4H) has slow vibration of 33〖 cm〗^(-1), verifying the reason why this material breaks the energy gap law. In addition, we also observed the effect of the pump with different pulse duration and different excitation wavelengths on its transient absorption spectrum, thus proving the importance of time resolution in TAS measurement.

    摘要.....i Abstract.....ii Table of contents.....iv Acknowledgment.....v List of figures and tables.....vi Chapter 1. Introduction.....1 Chapter 2. Theory.....5 2.1 Spectral broadening mechanisms.....5 2.1.1 Optical Kerr effect and self-focusing.....6 2.1.2 Self-phase modulation.....8 2.1.3 Self-steepening.....13 2.1.4 Multiple-plate continuum technique.....14 2.2 Dispersion compensation.....16 2.3 Pulse measurement.....19 2.4 Transient absorption spectroscopy system.....25 2.4.1 Normalized differential transmission spectrum (ΔT/T) definition.....25 2.4.2 Single-shot transient absorption spectroscopy measurement.....27 2.4.3 Interpretation of the signal from TA.....29 2.5 Noise contributions.....31 Chapter 3. Experiment.....34 3.1 Material characteristic.....34 3.2 Experiment setup.....37 3.3 Transient absorption spectroscopy results.....39 Chapter 4. Conclusion and future works.....53 References.....56 Appendix A. Polarization-gating frequency-resolved optical gating results.....59

    1. Hecker, S., M. Scharun, and T. Graf, Process monitoring based on plasma emission for power-modulated glass welding with bursts of subpicosecond laser pulses. Applied Optics, 2021. 60(12): p. 3526-3534.
    2. Miyamoto, I., K. Cvecek, and M. Schmidt, Crack-free conditions in welding of glass by ultrashort laser pulse. Opt Express, 2013. 21(12): p. 14291-302.
    3. Tamming, R.R., C.-Y. Lin, J.M. Hodgkiss, S.-D. Yang, K. Chen, and C.-H. Lu, Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy. Scientific Reports, 2021. 11(1): p. 1-8.
    4. Knowles, K.E., M.D. Koch, and J.L. Shelton, Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: spectroelectrochemistry, microscopy, and identification of thermal contributions. Journal of Materials Chemistry C, 2018. 6(44): p. 11853-11867.
    5. Gogoi, A., Y.-C. Liang, G. Keiser, and F.-J. Kao, Stimulated Raman scattering microscopy for brain imaging: basic principle, measurements, and applications, in Advanced Optical Methods for Brain Imaging. 2019, Springer. p. 189-218.
    6. Freudiger, C.W., W. Min, B.G. Saar, S. Lu, G.R. Holtom, C. He, J.C. Tsai, J.X. Kang, and X.S. Xie, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 2008. 322(5909): p. 1857-1861.
    7. Spence, D.E., P.N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Optics letters, 1991. 16(1): p. 42-44.
    8. Klimov, V.I. and D.W. McBranch, Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers. Optics letters, 1998. 23(4): p. 277-279.
    9. Berera, R., R. van Grondelle, and J. Kennis, Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis research, 2009. 101(2): p. 105-118.
    10. Lang, B., Photometrics of ultrafast and fast broadband electronic transient absorption spectroscopy: State of the art. Review of Scientific Instruments, 2018. 89(9): p. 093112.
    11. Righini, R., Ultrafast optical Kerr effect in liquids and solids. Science, 1993. 262(5138): p. 1386-1390.
    12. Del Coso, R. and J. Solis, Relation between nonlinear refractive index and third-order susceptibility in absorbing media. JOSA B, 2004. 21(3): p. 640-644.
    13. Sun, G.Z., E. Ott, Y. Lee, and P. Guzdar, Self‐focusing of short intense pulses in plasmas. The Physics of fluids, 1987. 30(2): p. 526-532.
    14. Dawes, E. and J. Marburger, Computer studies in self-focusing. Physical Review, 1969. 179(3): p. 862.
    15. Esarey, E., P. Sprangle, J. Krall, and A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE journal of quantum electronics, 1997. 33(11): p. 1879-1914.
    16. Nagy, T., P. Simon, and L. Veisz, High-energy few-cycle pulses: post-compression techniques. Advances in Physics: X, 2021. 6(1): p. 1845795.
    17. De Oliveira, J., M.A. de Moura, J.M. Hickmann, and A. Gomes, Self-steepening of optical pulses in dispersive media. JOSA B, 1992. 9(11): p. 2025-2027.
    18. Li, Z., L. Li, H. Tian, and G. Zhou, New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Physical Review Letters, 2000. 84(18): p. 4096.
    19. Lu, C.-H., Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A.H. Kung, Generation of intense supercontinuum in condensed media. Optica, 2014. 1(6): p. 400-406.
    20. Cheng, Y.-C., C.-H. Lu, Y.-Y. Lin, and A. Kung, Supercontinuum generation in a multi-plate medium. Optics express, 2016. 24(7): p. 7224-7231.
    21. Kane, D.J., Principal components generalized projections: a review. JOSA B, 2008. 25(6): p. A120-A132.
    22. Kanal, F., S. Keiber, R. Eck, and T. Brixner, 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy. Optics express, 2014. 22(14): p. 16965-16975.
    23. Dobryakov, A., S.A. Kovalenko, A. Weigel, J.L. Pérez-Lustres, J. Lange, A. Müller, and N. Ernsting, Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing. Review of Scientific Instruments, 2010. 81(11): p. 113106.
    24. Polli, D., L. Lüer, and G. Cerullo, High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. Review of Scientific Instruments, 2007. 78(10): p. 103108.
    25. Wilson, J.S., N. Chawdhury, M.R. Al-Mandhary, M. Younus, M.S. Khan, P.R. Raithby, A. Köhler, and R.H. Friend, The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. Journal of the American Chemical Society, 2001. 123(38): p. 9412-9417.
    26. Wei, Y.-C., S.F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, and P.-T. Chou, Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nature Photonics, 2020. 14(9): p. 570-577.
    27. Chen, B.-H., J.-X. Su, J.-Y. Guo, K. Chen, S.-W. Chu, H.-H. Lu, C.-H. Lu, and S.-D. Yang, Double-pass multiple-plate continuum for high temporal contrast nonlinear pulse compression. arXiv preprint arXiv:2201.12986, 2022.
    28. Lebedev, M., O.V. Misochko, T. Dekorsy, and N. Georgiev, On the nature of “coherent artifact”. Journal of Experimental and Theoretical Physics, 2005. 100(2): p. 272-282.
    29. Solov'ev, K.N. and E.A. Borisevich, Intramolecular heavy-atom effect in the photophysics of organic molecules. Physics-Uspekhi, 2005. 48(3): p. 231.
    30. Monni, R., G. Capano, G. Auböck, H.B. Gray, A. Vlček, I. Tavernelli, and M. Chergui, Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proceedings of the National Academy of Sciences, 2018. 115(28): p. E6396-E6403.
    31. Bresci, A., M. Guizzardi, C. Valensise, F. Marangi, F. Scotognella, G. Cerullo, and D. Polli, Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning. APL Photonics, 2021. 6(7): p. 076104.

    QR CODE