研究生: |
蔡宜芳 Tsai, Yi-Fang |
---|---|
論文名稱: |
磁振子在三氯化釕中的行為與實驗訊號預測 Magnon Behavior in the Kitaev Material Candidate α-RuCl3 and Its Signal Predictions |
指導教授: |
黃一平
Huang, Yi-Ping |
口試委員: |
徐有德
Hsu, Yu-Te 吳建德 Wu, Chien-Te |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 三氯化釕 、磁振子 、熱導率 、基塔耶夫材料 、磁性材料 |
外文關鍵詞: | magnon, Kitaev |
相關次數: | 點閱:33 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
作為具有自旋—軌道耦合的莫特-赫巴德模型系統,三氯化釕作為基塔耶夫材料的候選材料引起了巨大的興趣。實驗表明,三氯化釕在低溫下有序,但在施加有限磁場時會出現無序相。在熱霍爾訊號和拉曼數據中的低能激發行為也表明可能存在馬約拉納邊緣模式。然而,對於實驗的解釋及其實際的底層機制仍然存在許多爭論,因為三氯化釕是范德華材料,其可能存在堆疊層錯,而確切的基塔耶夫自旋液體在可解極限外只有微小的穩定區域。最近一份關於熱霍爾導率的實驗數據暗示,除了磁振子之外,我們還應該考慮聲子的效應。我們首先嘗試建立單層三氯化釕的最小模型,並使用線性自旋波理論(LSWT)來計算不同極限下的磁振子能帶結構。我們計算熱導率並確保它們滿足不同極限下的物理圖像。我們將聲子的貢獻留給未來的工作。本論文的結果有助於闡明微觀物理如何對磁振子熱輸運等宏觀現像做出貢獻,並為凝聚態物質的其他研究,特別是關於具有強自旋軌道耦合的強關聯磁性材料的研究奠定基礎。
i
As a Mott-Hubbard model system with strong spin-orbit coupling, α-RuCl3 is of huge interest as a candidate for the Kitaev material. Experiments show that α-RuCl3 orders at low temperature but a disordered phase occurs when a finite magnetic field is applied. The behaviors of its low energy excitation in thermal Hall signals and Raman data also suggest that there might exist Majorana edge modes. However, there are still lots of debates on the interpretations of the experiments and their actual underlying mechanism since α-RuCl3 is a Van der Waals material with the possible presence of stacking faults and the exact Kitaev spin liquid has only a tiny regime of stability beyond the solvable limit. Recent experimental data of α-RuCl3 on thermal Hall conductivity suggests that, apart from magnon, we should also consider the effect of phonons. We first try building a minimal model of monolayer α-RuCl3 and using linear spin wave theory (LSWT) to calculate the magnon band structures from different limits. We calculate the thermal conductivities and make sure they satisfy the physical pictures in different limits. We leave the contribution from phonons to future works. The results in this thesis help elucidate how microscopic physics contributes to macroscopic phenomena like magnon thermal transport and serve as a general foundation for other research in condensed matter, especially studies about strongly correlated magnetic materials with strong spin-orbit coupling.
[1] P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A. Banerjee, J. Yan, D. G. Mandrus, S. E. Nagler, and N. P. Ong, “Oscillations of the thermal conductivity in the spin-liquid state of α-rucl3,” Nature Physics, vol. 17, p. 915–919, May 2021.
[2] H. Suzuki, H. Liu, J. Bertinshaw, K. Ueda, H. Kim, S. Laha, D. Weber, Z. Yang, L. Wang, H. Takahashi, K. Fürsich, M. Minola, B. V. Lotsch, B. J. Kim, H. Yavaş, M. Daghofer, J. Chaloupka, G. Khaliullin, H. Gretarsson, and B. Keimer,“Proximate ferromagnetic state in the kitaev model material α-rucl3,” Nature Communications, vol. 12, July 2021.
[3] B. W. Lebert, S. Kim, D. A. Prishchenko, A. A. Tsirlin, A. H. Said, A. Alatas, andY.-J. Kim, “Acoustic phonon dispersion of α-rucl 3,” Physical Review B, vol. 106,no. 4, p. L041102, 2022.
[4] D. I. Khomskii, Transition metal compounds. Cambridge University Press, 2014.
[5] D. G. Joshi, “Topological excitations in the ferromagnetic kitaev-heisenberg model,” Phys. Rev. B, vol. 98, p. 060405, Aug 2018.
[6] G. Jackeli and G. Khaliullin, “Mott insulators in the strong spin-orbit coupling limit: From heisenberg to a quantum compass and kitaev models,” Phys. Rev. Lett., vol. 102, p. 017205, Jan 2009.
[7] A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics, vol. 321, p. 2–111, Jan. 2006.
[8] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, “Concept and realization of kitaev quantum spin liquids,” Nature Reviews Physics, vol. 1, p. 264–280, Mar. 2019.
[9] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, “Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials,” Annual Review of Condensed Matter Physics, vol. 7, no. 1, pp. 195–221, 2016.
[10] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Y.-J. Kim, “Magnetic order in α−rucl3: A honeycomb-lattice quantum magnet with strong spin-orbit coupling,” Phys. Rev. B, vol. 91, p. 144420, Apr 2015.
[11] Y. S. Hou, H. J. Xiang, and X. G. Gong, “Unveiling magnetic interactions of ruthenium trichloride via constraining direction of orbital moments: Potential routes to realize a quantum spin liquid,” Phys. Rev. B, vol. 96, p. 054410, Aug 2017.
[12] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar, Y. F. Hu, K. S. Burch, H.-Y. Kee, and Y.-J. Kim, “α − rucl3: A spin-orbit assisted mott insulator on a honeycomb lattice,” Phys. Rev. B, vol. 90, p. 041112, Jul 2014.
[13] R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentí, and R. Coldea, “Monoclinic crystal structure of α − rucl3 and the zigzag antiferromagnetic ground state,” Phys. Rev. B, vol. 92, p. 235119, Dec 2015.
[14] P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A. Banerjee, N. Quirk, D. G. Mandrus, S. E. Nagler, and N. P. Ong, “Planar thermal hall effect of topological bosons in the kitaev magnet α-rucl3,” Nature Materials, vol. 22, no. 1, pp. 36–41, 2023.
[15] É. Lefrançois, J. Baglo, Q. Barthélemy, S. Kim, Y.-J. Kim, and L. Taillefer, “Oscillations in the magnetothermal conductivity of α-rucl 3: Evidence of transition anomalies,” Physical Review B, vol. 107, no. 6, p. 064408, 2023.
[16] P. A. McClarty, X.-Y. Dong, M. Gohlke, J. G. Rau, F. Pollmann, R. Moessner, and K. Penc, “Topological magnons in kitaev magnets at high fields,” Phys. Rev. B, vol. 98, p. 060404, Aug 2018.
[17] W. Wang, Z.-Y. Dong, S.-L. Yu, and J.-X. Li, “Theoretical investigation of magnetic dynamics in α − rucl3,” Phys. Rev. B, vol. 96, p. 115103, Sep 2017.
[18] H. B. Cao, A. Banerjee, J.-Q. Yan, C. A. Bridges, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, B. C. Chakoumakos, and S. E. Nagler, “Low-temperature crystal and magnetic structure of α − rucl3,” Phys. Rev. B, vol. 93, p. 134423, Apr 2016.
[19] R. R. Neumann, A. Mook, J. Henk, and I. Mertig, “Thermal hall effect of magnons in collinear antiferromagnetic insulators: Signatures of magnetic and topological phase transitions,” Phys. Rev. Lett., vol. 128, p. 117201, Mar 2022.
[20] R. Matsumoto and S. Murakami, “Rotational motion of magnons and the thermal hall effect,” Phys. Rev. B, vol. 84, p. 184406, Nov 2011.
[21] S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev, A. Honecker, and R. Valentí, “Breakdown of magnons in a strongly spin-orbital coupled magnet,”Nature Communications, vol. 8, oct 2017.
[22] J. A. Sears, L. E. Chern, S. Kim, P. J. Bereciartua, S. Francoual, Y. B. Kim, and Y.-J. Kim, “Ferromagnetic kitaev interaction and the origin of large magnetic anisotropy in α-rucl3,” Nature Physics, vol. 16, p. 837–840, Apr. 2020.
[23] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory: application to the physics of condensed matter. Springer Science & Business Media, 2007.
[24] K. H. Lee, S. B. Chung, K. Park, and J.-G. Park, “Magnonic quantum spin hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice,”Phys. Rev. B, vol. 97, p. 180401, May 2018.
[25] L. Janssen, E. C. Andrade, and M. Vojta, “Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for α−rucl3 and na2iro3,” Phys. Rev. B, vol. 96, p. 064430, Aug 2017.
[26] R. Hentrich, A. U. B. Wolter, X. Zotos, W. Brenig, D. Nowak, A. Isaeva, T. Doert, A. Banerjee, P. Lampen-Kelley, D. G. Mandrus, S. E. Nagler, J. Sears, Y.-J. Kim, B. Büchner, and C. Hess, “Unusual phonon heat transport in α−rucl3: Strong spin-phonon scattering and field-induced spin gap,” Phys. Rev. Lett., vol. 120, p. 117204, Mar 2018.
[27] J. Bruin, R. Claus, Y. Matsumoto, J. Nuss, S. Laha, B. Lotsch, N. Kurita, H. Tanaka, and H. Takagi, “Origin of oscillatory structures in the magnetothermal conductivity of the putative kitaev magnet α-rucl3,” APL Materials, vol. 10, no. 9, 2022.
[28] S. Ren, J. Bonini, M. Stengel, C. E. Dreyer, and D. Vanderbilt, “Adiabatic dynamics of coupled spins and phonons in magnetic insulators,” Physical Review X, vol. 14, no. 1, p. 011041, 2024.
[29] S. K. Yip, “Coupling of acoustic phonon to a spin-orbit entangled pseudospin,”2023.
[30] L. Mangeolle, L. Balents, and L. Savary, “Thermal conductivity and theory of inelastic scattering of phonons by collective fluctuations,” Phys. Rev. B, vol. 106, p. 245139, Dec 2022.
[31] D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators. Cambridge University Press, 2018.