研究生: |
李智群 |
---|---|
論文名稱: |
微透鏡製程平台開發及其於微光機電系統整合應用 Development of Microlens Fabrication Platform and Its Application in MOEMS |
指導教授: | 方維倫 |
口試委員: |
方維倫
陳政寰 邱一 蔡睿哲 姚賜榮 林弘毅 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 微透鏡 、微光學平台 、熱致動器 、影像穩定器 |
外文關鍵詞: | microlens, SiOB, thermal actuator, image stabilizer |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以液相微透鏡成型技術為主軸,以光固化膠分別製作出平凸、雙凸、球狀透鏡,並以微矽光學平台之製程整合為考量,將上述高分子微透鏡與靜態微結構進行同平面光路或出平面光路整合。本研究提出將紫外光固化膠液珠成型技術改以在液體底下執行,藉由調變外界環境液體的材料特性來調整膠材的曲率半徑,再以紫外光透過環境液體照射固化,透過此方法可免除直接調整膠材或是基板的問題,可於製程中大幅度調整液珠曲率半徑,並將製程技術應用於製造平凸微透鏡及雙凸微透鏡。
上述製程除了可製作平凸或雙凸微透鏡外,本研究將延伸其製造概念,以液相製程環境製作全對稱的微球狀透鏡。本研究中將選取比重與膠材相近的環境液體為製程環境,此時膠材所受重力將與浮力抵銷,僅受表面張力作用成為全對稱球形,再以紫外光透過環境液體照射固化。球透鏡尺寸則可由液珠體積進行調整,亦可將球狀製程直接整合於微結構中,而全對稱的球狀透鏡將可應用於出平面或同平面光路的微矽光學平台中。
最後再以光學影像穩定系統為例,首先進行光學系統之規格分析,再將高分子微透鏡整合微機電致動元件,完成雙軸移動微透鏡平台之製造與驗證。本研究中亦將微熱致動器搭配高分子微透鏡進行系統整合,藉由絕緣聯結的設計,連接熱致動器與微透鏡框架,可大幅提昇聯結的熱阻,達到電性絕緣、避免熱耦合至其他元件並提昇熱致動器效率。
This study presented the lens profile modification process in liquid-phase medium. The radius of curvature of the photopolymer droplet can be modified by changing the ambiance during processing. This study further investigates the formation of polymer plano-convex and biconvex lens in a multi-phase ambience.
This study further reports a new approach to fabricate discrete micro ball lens in a gravity-free and non-wetting liquid ambient. The liquid photopolymer, which is suspended and insoluble in the liquid medium, will form a sphere caused by the surface tension. After that, the photopolymer is solidified inside the liquid medium by using the UV-light to define the lens shape. The liquid-phase formed lens is with high surface quality. The formation of such polymer ball lens can also be achieved on the Si substrate with suspended micromachined structures. Such ball lens is easily employed for SiOB with optical axis in in-plane as well as out-of-plane directions.
This study designs a polymer joint as a thermal isolation component to reduce the current and heat flow between micro thermal actuators for optical image stabilizer application. The optical stage is consisted of the V-beam thermal actuators for light tracking. To reduce the thermal coupling (through heat conduction) between these four actuators fabricated by SOI wafer, those components are connected by the low thermal conductivity joints.
[1] “Hewlett-Packard.” http://www.hpl.hp.com/research/printing_content_delivery.html.
[2] “Texas Instruments.” http://www.dlp.com/.
[3] “Analog Devices.” http://www.analog.com/en/mems-sensors/products/index.html.
[4] “InvenSense.” http://www.invensense.com/.
[5] “STMicroelectronics.” http://www.st.com/internet/analog/family/89.jsp.
[6] “Akustica MEMS Microphones.” http://akustica.com/.
[7] “Knowles Electronics.” http://www.knowles.com/search/.
[8] M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. of the IEEE, vol. 85, no. 11, p. 1833, 1997.
[9] R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch,” Photonics Technology Letters, IEEE, vol. 11, no. 11, p. 1396, 1999.
[10] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. of the IEEE, vol. 86, no. 8, p. 1687, 1998.
[11] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, p. S407, 2006.
[12] R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” Journal of Micromechanics and Microengineering, vol. 14, no. 12, p. 1700, 2004.
[13] C.-H. Kim, K.-D. Jung, and W. Kim, “A wafer-level micro mechanical global shutter for a micro camera,” in MEMS, Sorrento, Italy, 2009, p. 156.
[14] T. Brosnihan, R. Payne, J. Gandhi, S. Lewis, L. Steyn, M. Halfman, and N. Hagood, “Pixtronix digital micro-shutter display technology: a MEMS display for low power mobile multimedia displays,” in MOEMS-MEMS, 2010, pp. 759408–759408–9.
[15] G. Zhou, H. Yu, Y. Du, and F. S. Chau, “Microelectromechanical-systems-driven two-layer rotary-blade-based adjustable iris diaphragm,” Optics Letters, vol. 37, no. 10, p. 1745, 2012.
[16] C. Wang, S. Y. Lee, C. M. Sun, M. H. Tsai, and W. Fang, “Implementation of CMOS-MEMS Compound Lens,” in Optical MEMS and Nanophotonics, Hualien, Taiwan, 2007, p. 143.
[17] D. M. Bloom, “The grating light valve: revolutionizing display technology,” in Proc. of SPIE, 1997, vol. 3013, p. 165.
[18] J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range,” Sensors and Actuators A: Physical, vol. 76, no. 1, pp. 191–196, 1999.
[19] J. Masson, F. B. Koné, and Y. A. Peter, “MEMS tunable silicon Fabry-Perot cavity,” in International Symposium on Optomechatronic Technologies, 2007, pp. 671705–671705–9.
[20] C. Chui, P. D. Floyd, D. Heald, B. Arbuckle, A. Lewis, M. Kothari, B. Cummings, L. Palmateer, J. Bos, D. Chang, J. Chiang, Li-Ming Wang, Edmon Pao, Fritz Su, Vincent Huang, Wen-Jian Lin, Wen-Chung Tang, Jia-Jiun Yeh, Chen-Chun Chan, Fang-Ann Shu, and Yuh-Diing Ju, “The iMoD display: considerations and challenges in fabricating MOEMS on large area glass substrates,” in SPIE, San Jose, CA, USA, 2007, vol. 6466, pp. 646609–1.
[21] L. Fan, M. C. Wu, K. D. Choquette, and M. H. Crawford, “Self-assembled microactuated XYZ stages for optical scanning and alignment,” in Transducers, Chicago, USA, 1997, p. 319.
[22] R. R. A. Syms, “Optical MEMS in bonded silicon on insulator,” Design Automation and Test in Eupre, p. 007, 2005.
[23] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Optics letters, vol. 21, no. 2, pp. 155–157, 1996.
[24] R. R. A. Syms and D. F. Moore, “Optical MEMS for telecoms,” Materials today, vol. 5, no. 7, pp. 26–35, 2002.
[25] M. Lee and M. C. Wu, “Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction,” Microelectromechanical Systems, vol. 15, no. 2, pp. 338–343, 2006.
[26] M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Optics express, vol. 14, no. 11, pp. 4703–4712, 2006.
[27] E. Ollier, “Optical MEMS devices based on moving waveguides,” Selected Topics in Quantum Electronics, vol. 8, no. 1, pp. 155–162, 2002.
[28] J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked Si-based phase elements,” Photonics Technology Letters, vol. 17, no. 1, pp. 214–216, 2005.
[29] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, and C. Webb, “Die stacking (3D) microarchitecture,” in Microarchitecture, Orlando, FL, USA, 2006, pp. 469–479.
[30] K. Kim, “From the future Si technology perspective: Challenges and Opportunities,” in International Electron Devices Meeting, San Francisco, CA, USA, 2010, p. 1.1.1.
[31] “Intel.” http://www.intel.com/.
[32] “IBM.” http://www.research.ibm.com/.
[33] H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in Microelectronics and Electron Devices, 2004, pp. 7–18.
[34] T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, “A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology,” Electron Device Letters, vol. 26, no. 9, pp. 634–636, 2005.
[35] “Lytro.” https://www.lytro.com/science_inside#[Accessed: 13-Nov-2012].
[36] L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive Shack–Hartmann sensor,” Optics Communications, vol. 216, no. 4, p. 313, 2003.
[37] M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Optical Engineering, vol. 33, no. 11, p. 3556, 1994.
[38] J. Yao, Z. Cui, F. Gao, Y. Zhang, Y. Guo, C. Du, H. Zeng, and C. Qiu, “Refractive micro lens array made of dichromate gelatin with gray-tone photolithography,” Microelectronic engineering, vol. 57, pp. 729–735, 2001.
[39] C. S. Lee and C. H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A: Physical, vol. 88, no. 1, p. 87, 2001.
[40] Y. S. Kim, J. Kim, J. S. Choe, Y. G. Rob, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” Photonics Technology Letters, vol. 12, no. 5, pp. 507–509, 2000.
[41] S. K. Lee, K. C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” Journal of Micromechanics and Microengineering, vol. 12, no. 3, p. 334, 2002.
[42] B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsystem Technologies, vol. 10, no. 6, pp. 531–535, 2004.
[43] W. R. Cox, T. Chen, D. J. Hayes, and M. E. Grove, “Microjet printing of micro-optical interconnects for telecom devices,” in Proc. of SPIE, 2001, vol. 4292, p. 208.
[44] V. Fakhfouri, N. Cantale, G. Mermoud, J. Y. Kim, D. Boiko, E. Charbon, A. Martinoli, and J. Brugger, “Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses,” in MEMS, 2008, pp. 407–410.
[45] R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films, vol. 392, no. 2, pp. 223–225, 2001.
[46] R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, “Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 260, no. 1, pp. 464–467, 2007.
[47] W. Moench and H. Zappe, “Fabrication and testing of micro-lens arrays by all-liquid techniques,” Journal of Optics A: Pure and applied optics, vol. 6, no. 4, p. 330, 2004.
[48] H. Schmitt, M. Rommel, A. J. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectronic Engineering, vol. 87, no. 5, pp. 1074–1076, 2010.
[49] F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik-International Journal for Light and Electron Optics, vol. 113, no. 9, pp. 391–404, 2002.
[50] F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part II: Analytic models,” Optik-International Journal for Light and Electron Optics, vol. 113, no. 9, pp. 405–420, 2002.
[51] H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” Journal of Micromechanics and Microengineering, vol. 14, p. 1197, 2004.
[52] S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectronic engineering, vol. 83, no. 4–9, pp. 1087–1090, 2006.
[53] P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” Photonics Technology Letters, vol. 9, no. 10, pp. 1367–1369, 1997.
[54] D. M. Hartmann, O. Kibar, and S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Optics letters, vol. 25, no. 13, pp. 975–977, 2000.
[55] W. K. Huang, C. J. Ko, and F. C. Chen, “Organic selective-area patterning method for microlens array fabrication,” Microelectronic engineering, vol. 83, no. 4, pp. 1333–1335, 2006.
[56] W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” Photonics Technology Letters, vol. 17, no. 3, p. 606, 2005.
[57] B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Optical review, vol. 12, no. 3, pp. 255–259, 2005.
[58] C. W. Chen and F. G. Tseng, “Tunable micro-aspherical lens manipulated by 2D electrostatic forces,” in Transducers, 2005, vol. 1, pp. 376–379.
[59] K. Y. Hung, L. W. Chang, F. G. Tseng, J. C. Chiou, and Y. Chiu, “Optimum electrostatic force control for fabricating a hybrid UV-curable aspheric lens,” Journal of Micromechanics and Microengineering, vol. 20, no. 7, p. 075001, 2010.
[60] C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express, vol. 15, no. 12, pp. 7140–7145, 2007.
[61] R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Optics letters, vol. 30, no. 10, pp. 1159–1161, 2005.
[62] W. Jiang, Y. Sun, R. T. Chen, B. Guo, J. Horwitz, and W. Morey, “Ball-lens based optical add-drop multiplexers: design and implementation,” Photonics Technology Letters, vol. 14, no. 6, pp. 825–827, 2002.
[63] M. Sasaki, F. Nakai, K. Hane, K. Yokomizo, and K. Hori, “Absolute micro-encoder using image obtained by ball lens assembled inside wafer,” Journal of Optics A: Pure and Applied Optics, vol. 8, p. S391, 2006.
[64] N. Huby, D. Pluchon, N. Coulon, M. Belloul, A. Moreac, E. Gaviot, P. Panizza, and B. B che, “Design of organic 3D microresonators with microfluidics coupled to thin-film processes for photonic applications,” Optics Communications, vol. 283, no. 11, pp. 2451–2456, 2010.
[65] S. C. Shen and J. C. Huang, “Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications,” Optics Express, vol. 17, no. 15, pp. 13122–13127, 2009.
[66] J. Hsieh, S. Y. Hsiao, C. F. Lai, and W. Fang, “Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench,” Journal of Micromechanics and Microengineering, vol. 17, p. 1703, 2007.
[67] M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” Lightwave Technology, vol. 24, no. 12, pp. 4433–4454, 2006.
[68] D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” Communications Magazine, vol. 40, no. 3, pp. 75–79, 2002.
[69] Y. Chiu, J. C. Chiou, W. Fang, Y. J. Lin, and M. Wu, “Design, fabrication, and control of components in MEMS-based optical pickups,” Magnetics, vol. 43, no. 2, pp. 780–784, 2007.
[70] Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” Journal of Micromechanics and Microengineering, vol. 18, no. 12, p. 125005, 2008.
[71] R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani, and J. Stagg, “Scalable electrothermal MEMS actuator for optical fibre alignment,” Journal of Micromechanics and Microengineering, vol. 14, p. 1633, 2004.
[72] P. Kopka, M. Hoffmann, and E. Voges, “Coupled U-shaped cantilever actuators for 1× 4 and 2× 2 optical fibre switches,” Journal of Micromechanics and Microengineering, vol. 10, no. 2, p. 260, 2000.
[73] S. S. Lee, L. S. Huang, C. J. Kim, and M. C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” Journal of Lightwave Technology, vol. 17, no. 1, p. 7, 1999.
[74] J. Chou, K. Yu, D. Horsley, B. Yoxall, S. Mathai, M. R. . Tan, S. Y. Wang, and M. C. Wu, “Robust free space board-to-board optical interconnect with closed loop MEMS tracking,” Applied Physics A: Materials Science & Processing, vol. 95, no. 4, pp. 973–982, 2009.
[75] S. Y. Lee, C. H. Wang, C. H. Yang, C. M. Sun, and W. Fang, “CMOS based optical focusing stage with phase grating Fresnel lens,” in Transducers, 2009, pp. 2070–2073.
[76] S. H. Kim, Y. Yee, J. Choi, H. Kwon, M. H. Ha, C. Oh, and J. U. Bu, “Integrated MEMS optical flying head with lens positioning actuator for small form factor optical data storage,” Sensors and Actuators A: Physical, vol. 114, no. 2–3, pp. 429–437, 2004.
[77] A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” Photonics Technology Letters, IEEE, vol. 17, no. 9, pp. 1971–1973, 2005.
[78] K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” in MEMS, 2004, pp. 37–40.
[79] H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Optics Express, vol. 14, no. 23, pp. 11292–11298, 2006.
[80] H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Applied physics letters, vol. 83, no. 8, pp. 1515–1517, 2003.
[81] D. J. Bell, T. J. Lu, N. A. Fleck, and S. M. Spearing, “MEMS actuators and sensors: observations on their performance and selection for purpose,” Journal of Micromechanics and Microengineering, vol. 15, no. 7, p. S153, 2005.
[82] S. Y. Lee, H. W. Tung, W. C. Chen, and W. Fang, “Thermal actuated solid tunable lens,” Photonics Technology Letters, vol. 18, no. 21, pp. 2191–2193, 2006.
[83] L. Que, J. S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices,” Microelectromechanical Systems, Journal of, vol. 10, no. 2, pp. 247–254, 2001.
[84] “Nikon VR (Vibration-Reduction).” http://www.nikon.com/about/technology/rd/core/software/vr_e/index.htm.
[85] “Canon OIS (Optical Image Stabilizer).” http://www.usa.canon.com/cusa/consumer/standard_display/Lens_Advantage_IS.
[86] “Sony SteadyShot INSIDE.” http://www.sony.net/SonyInfo/technology/technology/theme/alpha_01.html#block3.
[87] “PENTAX SR.” http://www.pentaximaging.com/.
[88] “Apple iPhone.” http://www.apple.com/iphone/built-in-apps/.
[89] R. C. Gutierrez, T. K. Tang, R. Calvet, and E. R. Fossum, “MEMS digital camera,” in Electronic Imaging, 2007, p. 65020K–65020K–8.
[90] R. C. Gutierrez, E. R. Fossum, and T. K. Tang, “Auto-Focus Technology.”
[91] “OmniVision.” http://www.ovt.com/products/.
[92] Y. Dagan, “Wafer-level optics enables low cost camera phones,” in SPIE OPTO: Integrated Optoelectronic Devices, 2009, vol. 7218, p. 72180P.
[93] H. Han and K. Main, “Low cost camera modules using integration of wafer-scale optics and wafer-level packaging of image sensors,” in Communications and Photonics Conference and Exhibition, 2009, vol. 2009, pp. 1–7.
[94] “Cambridge Mechatronics.” http://www.cambridgemechatronics.com/.
[95] J. C. Chiou, C. C. Hung, and C. Y. Lin, “Design, fabrication and actuation of a MEMS-based image stabilizer for photographic cell phone applications,” Journal of Micromechanics and Microengineering, vol. 20, no. 7, p. 075025, 2010.
[96] F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” Journal of Optics A: Pure and Applied Optics, vol. 8, p. S330, 2006.
[97] J. M. Geary, Introduction to lens design: with practical ZEMAX examples. Willmann-Bell, 2002.
[98] “Piranha solution - Wikipedia.” http://en.wikipedia.org/wiki/Piranha_solution.
[99] G. T. Smith, Industrial metrology: surfaces and roundness. Springer Verlag, 2002.
[100] M. G. Han, Y. J. Park, S. H. Kim, B. S. Yoo, and H. H. Park, “Thermal and chemical stability of reflowed-photoresist microlenses,” Journal of Micromechanics and Microengineering, vol. 14, no. 3, p. 398, 2003.
[101] H. Y. Lin and W. Fang, “Rib-reinforced micromachined beam and its applications,” Journal of Micromechanics and Microengineering, vol. 10, p. 93, 2000.
[102] 陳文誌 博士論文, 單晶矽 H 型樑微熱致動器之開發 及其於微光機電系統之應用. 清華大學, 2010.
[103] R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectronic Engineering, vol. 67, pp. 461–472, 2003.
[104] D. Sachs, S. Nasiri, and D. Goehl, “Image stabilization technology overview,” InvenSense, 2006.
[105] Warren J. Smith, Modern lens design. McGraw-Hill.
[106] Warren J. Smith, Modern optical engineering - The design of optical systems. McGraw-Hill.
[107] 郭瑞雄 碩士論文, 光學防手振變焦鏡頭設計. 逢甲大學, 2010.
[108] “Lab Manual, Marvell Nanofabrication Laboratory.” http://nanolab.berkeley.edu/labmanual/labmantocnew.html.
[109] S. Y. Hsiao, C. C. Lee, and W. Fang, “The implementation of concave micro optical devices using a polymer dispensing technique,” Journal of Micromechanics and Microengineering, vol. 18, no. 8, p. 085009, 2008.
[110] S. Reichelt, A. Bieber, B. Aatz, and H. Zappe, “Micro-optics metrology using advanced interferometry,” 2005, vol. 5856, pp. 437–446.
[111] H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach-Zehnder interferometer for measuring wave aberrations of microlenses,” Optik, vol. 110, no. 5, pp. 239–243, 1999.
[112] S. Reichelt and H. Zappe, “Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing,” Applied optics, vol. 44, no. 27, pp. 5786–5792, 2005.
[113] T. Miyashita, K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, and T. Morokuma, “Wavefront aberration measurement technology for microlens using the Mach-Zehnder interferometer provided with a projected aperture,” in Optical Science and Technology, 2004, pp. 117–127.
[114] V. Gomez, Y. S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Measurement Science and Technology, vol. 20, p. 025901, 2009.
[115] Eric P. Goodwin and James C. Wyant, Field guide to interferometric optical testing. SPIE, 2006.
[116] “Thorlabs - Fixed Focus Collimation Packages: FC/PC Connectors.” http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=944[Accessed: 28-Nov-2012].
[117] “Zygo Interferometer Accessories.” http://www.zygo.com/?/met/interferometers/accessories/.
[118] “FringeXP, Ceravolo Collimation.” http://www.ceravolo.com/fringeXP.html[Accessed: 28-Nov-2012].
[119] “ApexWin, Lambda Research.” http://www.lambdares.com/[Accessed: 28-Nov-2012].
[120] D. Malacara, Optical shop testing, vol. 59. Wiley-Interscience, 2007.
[121] “IntelliWave, Interferometric Analysis Software.” http://www.esdimetrology.com/p/software/intelliwave.html[Accessed: 28-Nov-2012].