簡易檢索 / 詳目顯示

研究生: 黃上碩
Huang, Shang Shuo
論文名稱: 氧退火處理對FePt:B薄膜性質改善及FePt:C/B之雙層結構提升柱狀晶成長之研究
Oxygen post-annealing treatment on FePt:B films & promoted columnar grain growth in FePt:C/FePt:B bilayer structure
指導教授: 賴志煌
Lai, Chih Huang
口試委員: 蔡佳霖
Tsai, Jai-Lin
歐陽浩
Ouyang, Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 磁紀錄媒體硬磁材料序化鐵鉑合金微粒狀結構
外文關鍵詞: Recording media, hard magnetic material, L10 FePt, granular structure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FePt具有高的磁晶異相性及高矯頑場,被認為是次世代硬碟的熱門選擇。對於以L10 FePt 為基材的微粒狀紀錄媒體而言,B添加可以達到良好的微觀結構。然而故溶於FePt中的B會影響其序化行為,提升FePt的序化溫度。在本實驗的第一個部分,我們將初鍍膜的FePt:B薄膜在氧氣氛下進行後退火,發現在高溫的環境下,氧氣可以改善FePt:B的微觀結構及磁性質,使FePt:B有良好的(001)優選取向,及接近6奈米的晶粒尺寸。另一方面,C添加被認為是一個具有潛力的析出物材料選擇,其原因在於有良好的晶粒尺寸及磁性質表現。然而C會在FePt的晶粒表面析出妨礙柱狀晶成長。在本實驗的第二個部分,利用FePt:B (30 vol. %) 及FePt:C (28 vol. %)的優點,以FePt:C/FePtB的雙層結構,我們可以得到良好的晶粒分隔性及柱狀晶成長,而不破壞其序化,造成磁性質的劣化。藉由最佳化其成分及厚度,我們可以得到晶粒尺寸為6.92奈米及深寬比為1.44。本實驗利用同步輻射XPS觀察到B、C之間的鍵結,我們認為此鍵結是造成磁性質及為結構改善的主要原因。


    FePt has drawn lots of attention for the next-generation perpendicular magnetic recording media because of its large magnetocrystalline anisotropy. For L10 FePt-based granular recording media, the desired granular structure can be achieved by the addition of boron. However, the residual boron in FePt grains retards the L10 ordering. In first part, we introduce an additional post-annealing process in the oxygen atmosphere after the deposition of FePt:B films. We show that oxygen is capable of improving the boron segregation and therefore yields the granular and L10 ordered FePt films with the (001) orientation. In the other hand, C addition was reported as a promising segregant to obtain a small grain size of 6 nm with good L10 ordering and (001)-oriented FePt grains.However , the segregation on the top of FePt leads to a second layer of FePt grains with (111) orientation. In second part, we used bilayer composed of FePt:B (30 vol. %) and FePt:C (28 vol. %) films to take advantage of two segregants.By optimizing thickness of FePt:C and FePt:B we gets a good isolated granular structure with promoted columnar growth grain of 6.92 nm and aspect of 1.44 . We shows that the FePt:C template layer is able to retrieve the ordering in FePt:B by forming the B-C phase which is investigated by Synchrotron Radiation XPS.

    目錄 致謝…………………………………………………………………………………………………………………………..I 英文摘要………………………………………………………………………………………………………………….II 中文摘要…………………………………………………………………………………………………………..…...III 圖目錄……………………………………………………………………………………………………………………VI 表目錄…………………………………………………………………………………………………..……….…...XIII 第一章 簡介 1 1-1前言 1 1-2研究動機 3 1-3 論文大綱 5 第二章 理論探討及文獻回顧 6 2-1硬式硬碟的發展及理論介紹 6 2-1-1硬碟基本介紹 6 2-1-2 水平式紀錄與垂直式紀錄媒體的比較 10 2-1-3 磁紀錄面臨的難題 13 2-2 FePt系統之晶體結構 18 2-2-1 FePt系統 18 2-2-2 Fe-B系統 21 2-2-3 Fe-C 系統 22 2-3 不同添加析出物對微粒狀FePt:X薄膜的影響 23 2-3-1元素析出物FePt薄膜 24 2-3-2氧化物析出物FePt薄膜 30 2-3-3 FePt:C/FePt:MOx 雙層結構型薄膜 40 第三章 儀器介紹與實驗方法 42 3-1 樣品製備 42 3-1-1 超高真空濺鍍系統 42 3-1-2 TEM試片製備 44 3-2 性質檢測 44 3-2-1 晶體結構量測 44 3-2-2 膜厚及表面粗糙度量測 45 3-2-3 微結構量測 46 3-2-4 成分分析 47 3-2-5 磁性量測 49 第四章 結果與討論 50 4-1 氧退火效應對FePt:B薄膜的影響 50 4-1-1 FePt:B的基本性質 54 4-1-2 氧氣氛下後退火對於其晶體結構的影響 55 4-1-3 不同的氧分壓後退火對於FePt:B的影響 56 4-1-4 固定氧分壓下不同的退火溫度對於FePt:B的影響 58 4-1-5 成分分析及磁性質分析 61 4-1-6 氧退火效應對FePt:B薄膜的討論 63 4-2 利用FePt:C/FePt:B雙層結構提高柱狀晶成長之研究 64 4-2-1 FePt:C/FePt:B雙層結構的織構成長 67 4-2-2 總厚度為6奈米下微結構及磁性質變化 68 4-2-3 總厚度為10奈米的柱狀晶成長之研究 70 4-2-4 不同B體積分率對於固定厚度之FePt:C/FePt:B薄膜影響 72 4-2-5 不同C體積分率對於固定厚度之FePt:C/FePt:B薄膜影響 74 4-2-6 FePt:C/FePt:B雙層結構的成分分析 78 4-2-7 三層結構對於FePt:C/FePt:B的影響 81 第五章 結論 86 參考文獻 87

    [1] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerne. IEEE, Trans .Magns, Vol 36 ,10 ,2000.
    [2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas .Phys. Rev. Lett. 61, 2472 ,1988.
    [3] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn., vol. 34, p. 1845, 1998.
    [4] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn., vol. 34, p. 1845, 1998.
    [5] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn., vol. 34, p. 1845, 1998.
    [6] S. N. Piramanayagam , J. App. Phys. 102, 011301 ,2007.
    [7] Steven D. Granz, Katayun Barmak, and Mark H. Kryder, J. App. Phys. 111, 07B709 ,2012.
    [8] A. Perumal, Y. K. Takahashi, and K. Hono, Appl. Phys. Express 1, 101301 ,2008.
    [9] L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, J. Magn. Magn. Mater. 322, 2658 ,2010.
    [10] L. Zhang, Y. K. Takahashi, K. Hono, B. C. Stipe, J. Juang, and M. Grobis, J. Appl. Phys. 109, 07B703 ,2011.
    [11] Y. F. Ding, J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, and G. Ju, Appl. Phys. Lett. 93, 032506 (2008).
    [12] S. D. Granz, K. Barmak, and M. H. Kryder, Euro. Phys. J. B 86, 81 ,2013.
    [13] Taisuke Shiroyama, Bollapragada S. D. C. S. Varaprasad, Yukiko K. Takahashi, and Kazuhiro Hono, IEEE Trans. Magns., Vol. 50, No. 11, 2014.
    [14] S. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 ,1975.
    [15] S. Iwasaki, IEEE Trans. Magn. 16, 71 ,1980.
    [16] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 ,1999.
    [17] Shunichi Iwasaki ,Yoshihisa Nakamura ,IEEE Trans, Magns. 13(5), 1272-1277,1977.
    [18] X. Gu, P. Dorsey and T. P. Russell, Adv. Mater. 24 , 5505 ,2012.
    [19] Piramanayagam, S. N., & Srinivasan, K, Journal of Magnetism and Magnetic Materials.321(6), 485-494,2009.
    [20] Weller, D., & Doerner, M. F. E, 30(1), Annual review of materials science.611-644,2000.
    [21] Sharrock, M. P. Journal of Applied Physics,76(10), 6413-6418,1994.
    [22] Nakatani, Y., Uesaka, Y., Hayashi, N., & Fukushima, H. Journal of magnetism and magnetic materials, 168(3), 347-351,1997.
    [23] Bertram, H. N., & Williams, M. IEEE transactions on magnetics, 36(1), 4-9. 2000.
    [24] Gao, K. Z., & Bertram, H. N., IEEE Transactions , 38(6), 3675-3683, 2002.
    [25] Victora, R. H., & Shen, X. Magnetics, IEEE Transactions on, 41(2), 537-542,2005.
    [26] Tsunashima, S. Journal of Physics D: Applied Physics, 34(17), R87. ,2001.
    [27] Shiroishi, Y., Fukuda, K., Tagawa, I., Iwasaki, H., Takenoiri, S., Tanaka, H. & Yoshikawa, N.. Magnetics, IEEE Transactions on, 45(10), 3816-3822,2009.
    [28] K. Gao and H. N. Bertram, IEEE Trans. Magn. Vol. 38, pp. 3675–3683, 2002.
    [29] Aaron C, Johnston-Peck , Giovanna Scarel, Junwei Wang, Gregory N, Parsons and Joseph B. Tracy ,Nanoscale, 3, 4142-4149,2011.
    [30] Chun Feng, Bao-He Li, Gang Han, Jiao Teng, Yong Jiang, Quan-Lin Liu , Guang-Hua Yu.Appl. Phys. Lett. 88, 232109 ,2006.
    [31] Yu-Nu Hsu, Sangki Jeong, David E. Laughlin ,David N. Lambeth ,J. Appl. Phys. 89, 7068 ,2001.
    [32] Chang, C. W., et al. Journal of applied physics , 97.10 , 10N117-10N117,2005.
    [33] Maeda, T. Kai, T. Kikitsu, A. Nagase, T. & Akiyama, J. I. Applied physics letters, 80(12), 2147-2149 ,2002.
    [34] Lim, B. C., Chen, J. S., Hu, J. F., Lim, Y. K., Liu, B., Chow, G. M., & Ju, G. Journal of Applied Physics,103(7), 07E143-07E143,2008.
    [35] Kang, K., Zhang, Z. G., Papusoi, C., & Suzuki, T. , Applied physics letters, 84(3), 404-406, 2004.
    [36] Xu, Y., Chen, J. S., & Wang, J. P. Applied Physics Letters, 80(18), 3325-3327,2001.
    [37] Shen, W. K., Judy, J. H., & Wang, J. P. Journal of applied physics, 97(10), 10H301 ,2005.
    [38] Ding, Y. F., Chen, J. S., & Liu, E. Applied Physics A, 81(7), 1485-1490 ,2005.
    [39] Chiu, J. C., Wen, W. C., Wang, L. W., Wang, D. S., & Lai, C. H. Journal of Applied Physics, 115(17), 17B713 ,2014.
    [40] Okamoto, H. B-Fe (boron-iron). Journal of Phase Equilibria and Diffusion, 25(3), 297-298,2004.
    [41] Chipman, J. Thermodynamics and phase diagram of the Fe-C system, Metallurgical Transactions, 3(1), 55-64. 1972.
    [42] Christodoulides, J. A., Farber, P., Dannl, M., Okumura, H., Hadjipanaysi, G. C., Skumryev, V., ... & Weller, D. Magnetics, IEEE Transactions on, 37(4), 1292-1294. 2001.
    [43] Chen, J. S., Lim, B. C., Hu, J. F., Liu, B., Chow, G. M., & Ju, G. Applied Physics Letters, 91(13), 132506, 2007.
    [44] Zhang, L., Takahashi, Y. K., Perumal, A., & Hono, K. Journal of Magnetism and Magnetic Materials, 322(18), 2658-2664, 2010.
    [45] Hong, S., & Yoo, M. H. Journal of applied physics, 97(8), 084315, 2005.
    [46] Luo, C. P., Liou, S., Gao, L., Liu, Y., & Sellmyer, D. J. APPLIED PHYSICS LETTERS VOLUME 77, NUMBER 14-2 , 2000.
    [47] Ichitsubo, T., Tojo, S., Uchihara, T., Matsubara, E., Fujita, A., Takahashi, K., & Watanabe, K. Physical Review B, 77(9), 094114, 2008.
    [48] Granz, S. D., Barmak, K., & Kryder, M. H. Journal of Applied Physics, 111(7), 07B709, 2012.
    [49] Chiu, J. C., Wen, W. C., Wang, L. W., Wang, D. S., & Lai, C. H. Journal of Applied Physics, 115(17), 17B713, 2014.
    [50] Watanabe, M., Masumoto, T., Ping, D. H., & Hono, K. Applied Physics Letters, 76(26), 3971, 2000.
    [51] Yang, E., & Laughlin, D. E. Journal of Applied Physics, 104(2), 23904-23904, 2008.
    [52] Chen, J. S., Lim, B. C., Ding, Y. F., Hu, J. F., Chow, G. M., & Ju, G.. Journal of Applied Physics,105(7), 7B702, 2009.
    [53] Shiroyama, T., Abe, T., Takahashi, Y., & Hono, K.IEEE Transactions on, 49(7), 3616-3619, 2013.
    [54] Varaprasad, B. C. S., Takahashi, Y. K., & Hono, K. JOM, 65(7), 853-861, 2013.
    [55] Ono, T., Moriya, T., Hatayama, M., Kikuchi, N., Okamoto, S., Kitakami, O., & Shimatsu, T. Journal of Applied Physics, 115(17), 17B709, 2014.
    [56] Zheng, M., Acharya, B. R., Choe, G., Zhou, J. N., Yang, Z. D., Abarra, E. N., & Johnson, K. E.. Magnetics, IEEE Transactions on,40(4), 2498-2500, 2004.
    [57] Sato, S., & Kleppa, O. J. Metallurgical Transactions B, 13(2), 251-257,1982.
    [58] Chase, M.W., Jr., J. Phys. Chem. Ref. Data, Monograph 9, 1-1951, 1998.
    [59] Yap, C. P., & Liu, C. L. Transactions of the Faraday Society, 28, 788-797, 1932.
    [60] Wohlfarth, E. P. Journal of Applied Physics, 29(3), 595-596. 1958.
    [61] Weller, D., Mosendz, O., Richter, H. J., Parker, G., Pisana, S., Santos, T. S.& Terris, B. In Ultrafast Magnetism I (pp. 228-231). 2015.
    [62] D. Weller, O. Mosendz, G. Parker, S. Pisana and T. S. Santos.Phys. Status Solidi A.210, 1245 .2013.
    [63] Cargill, G. S., & Spaepen, F. Journal of Non-Crystalline Solids, 43(1), 91-97. 1981.
    [64] Dannenberg, A., Gruner, M. E., Hucht, A., & Entel, P. Physical Review B, 80(24), 245438. 2009.
    [65] Hayami, W., & Otani, S. In Journal of Physics: Conference Series (Vol. 176, No. 1, p. 012017). 2009, June.
    [66] Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis. Sixth Edition, Thomson Brooks/Cole, USA (2007).
    [67] http://comp.uark.edu/~jchakhal/AFM%20scans.html
    [68] Williams, D and Carter, C. B. Transmission Electron Microscopy. 1 - Basics. Plenum Press. 1996.
    [69] Jiang-Tao Li et al . J. Phys. D: Appl. Phys. 47 105301. 2014.
    [70] http://magnetism.eu/esm/2005-constanta/slides/sander-slides.pdf
    [71] Jacobsohn, L. G., Schulze, R. K., da Costa, M. M., & Nastasi, M. Surface Science, 572(2), 418-424. (2004).
    [72] Park, E., Ostrovski, O., Zhang, J., Thomson, S., & Howe, R. Metallurgical and Materials Transactions B, 32(5), 839-845. (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE