簡易檢索 / 詳目顯示

研究生: 詹育全
Yu-Chuan Chan
論文名稱: 以分子動力學模擬液態水與甲醇水溶液在奈米碳管中之傳輸性質
Molecular Dynamics Simulations of Transport Properties of Liquid water and Mixed Water-Methanol Confined in Carbon Nanotubes
指導教授: 潘欽
Chin Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 85
中文關鍵詞: 分子動力學甲醇奈米碳管自我擴散係數
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在奈米科學的理論中,發現到許多物質在奈米的尺度下,呈現出的物理現象及材料特性與傳統巨觀下的理論不同。為研究奈米科學,因在實驗量測上頗具困難度,分子動力學就成為最重要的研究工具。
    本研究是以分子動力學理論為基礎並結合高效能的電腦設備及高效率的程式設計,模擬液態水與甲醇水溶液在室溫下(298.15K)在單壁奈米碳管中的傳輸性質,如自我擴散係數。
    本文主要是研究水分子與不同莫耳濃度甲醇水溶液在三種不同尺寸單壁奈米碳管、三種不同溫度的自我擴散係數,以及在是否加入類重力的條件下的變化。碳管半徑為4.1 Å、5.45 Å、6.8Å,溫度為298K、400K、500K,莫耳濃度( )為0.25、0.5、0.75、1.0。並與文獻中的理論分析或實驗結果作驗證,提出物理解釋與探討。
    模擬結果發現液態水以及甲醇水溶液在單壁奈米碳管中的自我擴散係數為非等方性,其軸向方向擴散係數大於徑向方向,而且整體的擴散係數明顯地低於統體( Bulk )的擴散係數;隨著模擬溫度的提高,液態水以及甲醇水溶液在管中的擴散係數也如同統體( Bulk )一樣,隨之升高;比較系統中是否加入類重力的兩種結果,觀察到加入類重力系統的軸向方向擴散係數遠遠大於未加入類重力系統。此外,甲醇水溶液的擴散係數會隨著莫耳濃度增加而降低。


    目錄 頁碼 摘要 Ⅰ誌謝 Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅸ 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與目的 2 1.3 奈米碳管的概述 5 1.4 論文架構 7 第二章 文獻回顧 11 2.1 分子動力學之相關文獻 11 2.2 均質水分子在奈米碳管中模擬之相關文獻 12 2.3 甲醇水溶液在奈米碳管中模擬之相關文獻 14 第三章 分子動力學理論 15 3.1 核心理論 15 3.2 分子位能勢函數 17 3.2.1 水分子間的位能勢函數 18 3.2.2 甲醇分子間的位能勢函數 19 3.2.3 甲醇水溶液的位能勢函數 21 3.2.4 水分子跟碳原子間的位能勢函數 22 3.2.5 甲醇水溶液跟碳原子間的位能勢函數 23 3.3 分子間作用力計算的簡化 24 3.4 系統的溫度控制與程式的主體架構 25 第四章 均質水分子在奈米碳管內的模擬 33 4.1 水分子與奈米碳管的基本結構 33 4.2 模擬系統參數的設定 34 4.3 自我擴散係數(Self Diffusion Coefficient) 35 4.4 水分子在奈米碳管中的行為 39 第五章 甲醇水溶液在奈米碳管內的模擬 57 5.1 甲醇水溶液的基本結構 57 5.2甲醇與水分子混合的理論模式 58 5.3模擬系統的相關設定 58 5.4 模擬結果 59 第六章 結論與建議 77 6.1 結論 77 6.2 建議 78 參考文獻 80

    [1] 賴秋助、顏宇欣,“微小型直接甲醇燃料電池系統設計”,工業材料,第193期,第120-126頁,2003。
    [2] P. Argyropoulos, K. Scott and W. M. Taama, ‘‘Carbon dioxide evolution patterns in direct methanol fuel cells,’’ Electrochimica Acta, vol. 44, p3575-3584., 1999.
    [3] S. Maruyama, W. J. Minkowycz and E. M. Sparrow (Eds). “Molecular dynamics method for microscale heat transfer,” Advances in Numerical Heat Transfer, vol. 2, Chap. 6, p. 189-226, Taylor & Francis, New York, 2000.
    [4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller. and E. Teller, “Equation of state calculations by fast computing machines”, J. Chem. Phys., vol. 21, p1087-1092, 1953.
    [5] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys., vol. 27, p1208-1209, 1957.
    [6] S. Iijima, ‘‘Helical microtubules of graphitic carbon,’’ Nature, vol. 354, p56-58,1991.
    [7] 成會明,“奈米碳管”,五南圖書出版股份有限公司,2004。
    [8] 楊宗翰, “Molecular Dynamics Simulations of Liquid Water Film Evaporation and Physical Processes of Nano Water Droplet on an Isothermal Platinum Surface ,” 國立清華大學工程與系統科學所碩士論文, 2004。
    [9] A. Rahman, “Correlations in the motion of atoms in liquid argon,” Phys. Rev., vol. 136, p405-411, 1964.
    [10] H. C. Andersen, “Molecular dynamics at constant pressure and/or temperature,” J. Chem. Phys., vol. 72, p2384-2393, 1980.
    [11] J. K. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, p3684-3690, 1984.
    [12] S. Nose’, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, p511-519 ,1984.
    [13] W. G. Hoover, “Canonical dynamics: equilibrium phase-space distribution,” Phys. Rev. A., vol. 31, p1695-1697, 1985.
    [14] M. Parrinello and A. Rahman, “Strain fluctuations and elastic constants,” J. Chem. Phys., vol. 76, p2662-2666, 1982.
    [15] M. C. Gordillo and J. Martí, ‘‘Hydrogen bond structure of liquid water confined in nanotubes,’’ Chem. Phys. Lett., vol. 329, p341-345, 2000.
    [16] M. C. Gordillo and J. Martí, ‘‘Temperature effects on the static and dynamic properties of liquid water inside nanotubes,’’ Phys. Rev. E. vol. 64, 021504, 2001.
    [17] Y. C. Lin, Q. Wang and L. H. Lu, ‘‘Transport Properties and Distribution of Water Molecules Confined in Hydrophobic Nanopores and Nanoslits,’’ Langmuir, vol.20, p6921-6926, 2004.
    [18] P. S. Vladimir, D. Nicholson and N. Quirke, ‘‘Fluid flow in nanopores : Accurate boundary conditions for carbon nanotubes,’’
    J. Chem. Phys., vol. 117, 18, 2002.
    [19] Y. C. Lin and Q. Wang, ‘‘Transport behavior of water confined in carbon nanotubes,’’ Phys. Rev. B., vol. 72, 085420, 2005.
    [20] D. T. W. Lin and C. K. Chen, ‘‘A molecular dynamics simulation of TIP4P and Lennard-Jones water in nanochannel,’’ Acta Mechanica, vol. 173, p181-194, 2004.
    [21] J. Zheng, E. M. Lennon, H. K. Tsao, Y. J. Sheng and S. Jiang, ‘‘Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient,’’ J. Chem. Phys., vol. 122, 214702, 2005.
    [22] 林弘凡,“應用分子動力學與平行運算於奈米流場分析之研究”,國立清華大學化學工程所碩士論,2004。
    [23] J. M. Haile, “Molecular Dynamics Simulation. Elementary Methods ,” John Wiley & Sons, New York, 1992.
    [24] H. J. C. Berendsen, J. R. Grigeira and T. P. Straatsma, “The missing term in effective pair potentials,” J. Phys. Chem., vol. 91, p6269-6271, 1987.
    [25] 沙宇軒, “Molecular Dynamics Simulations of Some Physical Properties of Liquid Methanol and Mixed Water-Methanol ,” 國立清華大學工程與系統科學所碩士論文, 2005。
    [26] W.L. Jorgensen, ‘‘ Structure and Properties of Liquid Methanol,’’ American Chemical Society, 1979.
    [27] S. Weiner, P. Kollman, D. T. Nguyen and D. Case, ‘‘An all atom force field for simulation of proteins and nucleic acids,’’ J. Comput. Chem., p230252, 1986.
    [28] E. N. Brodskaya, ‘‘Molecular–Dynamic Simulation
    of Mixed Water–Methanol Clusters: 1. Local Structure,’’ Colloid Journal, Vol. 63, No. 1., 2001.
    [29] E. N. Brodskaya, ‘‘Molecular–Dynamic Simulation of Mixed Water–Methanol Clusters: 2. Surface Potential,’’ Colloid Journal, Vol. 63, No. 1., 2001.
    [30] S. Maruyama and Tatsuto Kimuru, ‘‘Molecular Dynamics Simulation of Hydrogen Storage in Single-Walled Carbon Nanotube,’’ ASME International Mechanical Engineering Congress and Exhibit, Orland, November 5-11, 2000.
    [31] T. Werder, J. H. Walther, R. L. Jaffe, E. M. Kotsalis, T. Halicioglu and P. Koumoutsakos, ‘‘Hydrophobic hydration of C60 and carbon nanotubes in water,’’ Carbon, vol. 42, p1185-1194, 2004.
    [32] T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu and P. Koumoutsakos, ‘‘On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes,’’ J. Phys. Chem. B., vol. 107, p1345-1352, 2003.
    [33] M. J. Bojan and W. A. Steele, ‘‘Interactions of Diatomic Molecules with Graphite,’’ Langmuir, vol. 3, p1123-1127, 1987.
    [34] D. Cao, X. Zhang, J. Chen, W. Wang and J. Yun, ‘‘Optimization of
    Single-Walled Carbon Nanotube Arrays for Methane Storage at
    Room Temperature,’’ J. Phys. Chem. B., vol. 107, p13286-13292,
    2003.
    [35] R. Saito, G. Dresselhaus and M. S. Dresselhaus, ‘‘Physical Properties of Carbon Nanotubes,’’ Imperial College Press., 1998.
    [36] L. Verlet, ‘‘computer〝experiments〞on classical fluids. I. thermodynamical properties of Lennard-Jones molecules,’’ phys. Rev., vol. 159, p98-103., 1957.
    [37] M. P. Allen and D. J. Tildesley, ‘‘Computer Simulation of Liquids,’’ Clarendon Press., Oxford, 1987.
    [38] R. J. Sadus, “Molecular Simulation of Fluids Theory, Algorithm and
    Object-Orientation,” Elsevier Science, 1999.
    [39] D. C. Rapaport, ‘‘The Art of Molecular Dynanics Simulation,’’
    Cambridge University Press., Cambridge, 1995.
    [40] K. Krynicki, C. D Green and D. W. Sawyer, ‘‘Pressure and temperature dependence of self-diffusion in water,’’ Faraday. Discuss. Chem. Soc., vol. 66, p199-207. 1978.
    [41] G. Hummer, J. C. Rasaiah and J. P. Noworyta, ‘‘Water conduction
    through the hydrophobic channel of a carbon nanotube,’’ Nature,
    vol. 414, p188-190, 2001.
    [42] R. L. Hurle and L. A. Woolf, ‘‘The effect of isotopic substitution on self-diffusion in methanol under pressure,’’ Aust. J. Chem., Vol. 33, p1947-1952., 1980.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE