研究生: |
王昱筑 Yu-Chu Wang |
---|---|
論文名稱: |
以3w法量測Bi0.5Sb1.5Te3薄膜之熱傳導係數 Thermal Conductivity of Bi0.5Sb1.5Te3 Thin Films Measured by The 3w Method |
指導教授: |
廖建能
Chien-Neng Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 熱電材料 、薄膜 、Bi0.5Sb1.5Te3 、熱傳導係數 、3-omega method 、晶粒尺寸 |
外文關鍵詞: | thermoelectrics, thin films, Bi0.5Sb1.5Te3, thermal conductivity, 3-omega method, grain size |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用濺鍍的方式將目前室溫下性質最好的熱電材料Bi0.5Sb1.5Te3濺鍍在長有二氧化矽的基板上,藉由控制基板溫度的高低得到不同晶粒尺寸的Bi0.5Sb1.5Te3薄膜。利用3ω法量測不同晶粒尺寸以及經過退火之後的Bi0.5Sb1.5Te3薄膜的熱傳導係數(κ),並利用Wiedemann-Franz law分離出載子熱傳導係數(κe)與晶格熱傳導係數(κL)。由於未退火的Bi0.5Sb1.5Te3薄膜有很高的電阻率,使熱傳導係數幾乎全由晶格熱傳導係數所貢獻,且晶格熱傳導係數隨著晶粒尺寸變大而提升。退火後,由於電阻率大幅下降,使載子熱傳導係數大幅上升。由於晶粒尺寸在退火前後沒有很大的差異,所以推測晶格熱傳導係數的上升來自退火後晶粒內部缺陷數量的減少。
Bi0.5Sb1.5Te3 thin films are deposited on silicon dioxide substrates by RF sputtering. By changing the substrate temperature, we acquire Bi0.5Sb1.5Te3 thin films with different grain size. The thermal conductivity of Bi0.5Sb1.5Te3 thin films is measured using the 3ω method, and the lattice thermal conductivity and the electrical thermal conductivity are separated using the Wiedemann-Franz law. The lattice thermal conductivity dominates because of the high resistivity of the Bi0.5Sb1.5Te3 thin films, and it increases with greater grain size. After annealing, the electrical thermal conductivity substantially increases because of the decreasing of the resistivity, and we conjecture that the increasing of the lattice thermal conductivity results from the decreasing of the defects number in grains due to the same grain size before and after annealing.
[1] K.Kishimoto, K.Yamamoto, and T.Koyanagi,”Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size”, Japanese Journal of Applied physics, 42,p.501,(2003)
[2] Venkatasubramania, Rama, Slivola, Edward, Colppits, Thomas, O’Quinn, Brooks, “Thin-film thermoelectric devices with high room-Temperature figures of merit”, Nature 413,p.597(2001)
[3] Thermoelectrics Handbook : Macro to Nano, edited by D.M.Rowe, Ph.D., D.Sc., Ch.46
[4] Thermoelectrics Handbook : Macro to Nano, edited by D.M.Rowe, Ph.D., D.Sc., Ch.3
[5] Thermoelectrics, edited by S.Nolas, J.Sharp, and H.J.Goldsmid, Ch.2, P.38
[6] T.Yao, “Thermal properties of AlAs/GaAs superlattices”, Applied Physics Letters ,51(22) : p.1798~1800 (1987)
[7] G.Chen, et al., “Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures”, ASME Journal of Heat Transfer, 116(2) : p.325~311 (1994)
[8] D.G.Cahill, “Thermal conductivity measurement from 30 to 750 K : the 3ω method”, Review of Scientific Instruments, 61(2), p.802(1990)
[9] S.M.Lee, and David G.Cahill, “Heat transport in thin dielectric films”, Journal of Applied Physics, 81(6), 15,p.2590(1997)
[10] D.G.Cahill, M.Katiyar, J.R.Abelson, “Thermal conductivity of alpha -SiH thin films”, Physical Review B, 50, p.6077(1994)
[11] T. Borca-Tasciuc, A.R.Kumar, and G.Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination”, Review of Scientific Instruments, 72(4),p.2139(2001)
[12] Brandon W.Olson, Samuel Graham, Kuan Chen, “A practical extension of 3ω method to multilayer structures”, Review of Scientific Instruments, 76, 053901(2005)
[13] J.L.Batagglia, C.Wiemer, and M.Fanciulli, “An accurate low-Frequency model for the 3ω method”, Journal of Applied Physics,101, 104510(2007)
[14] Y.G.Kim, K.H.Kang, and K.S.Gam, “Measurement of the Seebeck coefficients of binary Cu-Ni alloys “, Measurement Science and Technology, 15, p.1266(2004)
[15] L.J.Van der Pauw, “A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitary Shape”, Phillips Technica Review, 20, p.220(1958)
[16] Chien.HC, Yao.DJ, Huang.MJ, “Thermal conductivity
measurement and interface thermal resistance estimation using SiO2 thin film”, Review of Scientific Instruments, Vol.79, 054902, 2008
[17] E.T.Swartz and R.O.Pohl, “Thermal boundary resistance”, Review of Modern Physics, Vol.61, No.3, p.606(1989)
[18] K.Park et al., “Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion”, Material Science and Engineering, B88, p.103~106(2002)
[19] Thermal conductivity 23, Proceedings of the 23th ICTT, edited by Kenneth E. Wilkes, Ralph B. Dinwiddie, and Ronald S. Graves, p130~143
[20] Bed Poudel et al., “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys”, Science, Vol.320, p.634(2008)
[21] Ce-Wen Nan and R.Birringer, “Determining the Kapitza resistance And the thermal conductivity of polycrystals : A simple model”, Physical Review B, Vol.57, No.14, p.8264(1998)
[22] Muhammet S.Toprak et al., “The Impact of Nanostructuring on the Thermal conductivity of Thermoelectric CoSb3”, Advanced Functional Materials, 14, No.12, p.1189(2004)
[23] Dong-Hwan Kim, Tadaoki Mitani, “Thermoelectric properties of fine-grained Bi2Te3 alloys”, Journal of Alloys and Compounds, 399 p.14-19 (2005)
[24] 王亞帆碩士論文, “能障散射效應對Bi0.5Sb1.5Te3薄膜熱電性質影響之研究”, 國立清華大學研究所(2007)