研究生: |
張維倫 Wei-Leun Chang |
---|---|
論文名稱: |
異向性導電膠膜與黏晶膠的機械性質與可靠度測試 Mechanical properties and reliability tests of anisotropic conductive films (ACF) and die attach adhesives |
指導教授: |
葉銘泉
Ming-Chuen Yip |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 異向性導電膠膜 、可靠度 |
外文關鍵詞: | anisotropic conductive films, reliability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討封裝常用的兩種膠材,異向性導電膠與黏晶膠,在不同溫度與不同的應變率下,材料強度與楊氏係數的變化。此外,針對異向性導電膠進行了70oC高溫老化與85oC/85%RH高溫高溼老化的可靠性測試、在不同溫度下接著強度測試、以及各種接著參數對接著強度的影響測試,其中異向性導電膠的接著強度的測試都是以撥離強度作為基準。另外,經由掃描式電子顯微鏡觀察試片撥離後的斷面,藉以了解相關的破壞機制。
在膠材的強度與楊氏係數測試的方面,我們可以發現兩種材料都有相同的結果,拉伸速率越快,破壞應力越高;相反的,拉伸速率越慢,試片受到拉伸的時間較長,破壞應變也會變得較長。在不同的溫度下,材料強度與楊氏係數會因溫度升高,破壞應力與楊氏係數會有下降的現象,尤其在越高溫,這樣的效果越是明顯。
從兩個不同環境的可靠度測試中,我們發現異向性導電膠的撥離強度受到溼度的影響遠比溫度的影響大,大約到120小時之後,四種不同的異向性導電膠材撥離強度都已經掉落到比尚未老化之前低的地方。高溫老化對膠材的影響,一開始可以讓膠材的接著變得更強,但高溫老化時間過長時,膠材會逐漸的轉變成脆性,接著強度也隨著開始下降。
從不同的異向性導電膠接著參數的撥離強度測試部分,我們可以發現,接著的溫度越高,或是接著的時間越長,接著後的撥離強度會有明顯的增加;從異向性導電膠在不同溫度的撥離強度測試也可以發現,隨著環境溫度的上升,撥離強度會有很明顯的下降。
第七章、參考文獻
1. 王閔生, “封裝材料在不同溫度下的靜態和潛變行為.”碩士論文—國立清華大學動力機械工程研究所, 2002.
2. 陳冠中, “溫度-時間效應對底膠填充材料機械性質影響之研究.”碩士論文—國立清華大學動力機械工程研究所, 2003.
3. 簡嘉南, “BT材料積層板及其經鑽孔設計後受不同應變率拉伸強度試驗之研究.” 碩士論文—國立清華大學動力機械工程研究所, 2001.
4. 許永昱, “底膠填充材料在不同環境及介面條件下之介面黏著強度與破壞模式分析.” 碩士論文—國立清華大學動力機械工程研究所, 2001.
5. Kazuyuki Motoki, Masaki Oyama, Takayuki Imai, Takahiro Ishii and Masayuki Kimata, “Connecting technology of anisotropic conductive materials”
6. Helge Kristiansen and Johan Liu, “Overview of Conductive Adhesive Interconnection Technologies for LCD’s.” IEEE transactions on components, packaging, and manufacturing technology—part A, vol. 21, no. 2, pp. 208-214, june 1998.
7. R. G. Mckenna and T. M. Moore, “Advanced Interconnect Technologies,” Characterization of Integrated Circuit Packaging Materials, Butterworth-Heinemann, Boston, pp. 187-212, 1993.
8. I. Watanabe, “ACF flip-chip technology on low-cost substrates,” in The second IEEE International Symposium on Polymeric Electronics Packaging, PEP 99, Tampere University of Technology pp. 153-8, 1999.
9. J. Liu, Conductive Adhesives for Electronic Packaging, Isle of Man Electrochemical Publications, 1999.
10. N. O. Chuks, H. M. Samjid, C. W. David and J. W. David, “Conduction mechanism in anisotropic conducting adhesive assembly,” IEEE Trans Comp, Packaging, Manufact Technol–Part A, 21(2), pp. 235-42, 1998.
11. S. M. Chang, J. H. Jou, A. Hsieh, T. H. Chen, C. Y. Chang, Y. H. Wang and C. M. Huang, “Characteristic study of anisotropic conductive film for flip chip on film packaging,” Microelectronics Reliability 41, pp. 2001-2009, 2001.
12. Y. C. Chan and D. Y. Luk, “Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly. II. Different bonding pressure,” Microelectronics Reliability 42, pp. 1195-1204, 2002.
13. S. Gupta, R. M. Hydro and R. A. Pearson, “Fracture behaviour of isotropically conductive adhesives,” IEEE Trans Components Packaging Technol, 22(2), pp. 209-14, 1999.
14. S. Liong and C. P. Wong, “An alternative to epoxy resin for application in isotropically conductive adhesive,” Proceedings of International Symposium on Advanced Packaging Materials, pp. 13-8, 2001
15. R. Gomatam, E. Sancaktar, D. Boismier, D. Schue and L. Malik, “Behavior of electronically conductive filled adhesive joints under cyclic loading part 1: Experimental approach,” Proceedings of International Symposium on Advanced Packaging Materials, pp. 6-12. 2001.
16. C. W. Tan, Y. C. Chan and N. H. Yeung, “Behaviour of anisotropic conductive joints under mechanical loading,” Microelectronics Reliability, 43, pp. 481-486, 2003.
17. C. M. L. Wu, N. H. Yeung, M. L. Chau and J. K. L. Lai, “Residual Strength of OLB Assembly with ACF after Thermal and Mechanical Loading,” IEEE, pp. 295-298, 1998.
18. Cameron T. Murray, Peter B. Hogerton and Harry Egeberg, “Reliability study of sub 100 micro pitch, flux-to-ITO/glass interconnection, Bonded with an anisotropic conductive film,
19. M. T. Goosey, Plastics for Electronics, Elsevier Applied Science Publishers, London and New York, pp. 177-9, 1995.
20. C. M. Lawrence Wu and M. L. Chau, “Degradation of flip chip on glass interconnection with ACF under high humidity and thermal aging,” Soldering and Surface Mount Technology, 14/ 2, pp. 51–58, 2002.
21. J. Liu, “On the failure mechanism of anisotropically conductive adhesive joints on copper metallisation,” Int J Adhes Adhes, 16(4), pp. 285-7, 1996.
22. J. H. Zhang, Y. C. Chan, M. O. Alam and S. Fu, “Contact resistance and adhesion performance of ACF interconnections to aluminum metallization,” Microelectronics Reliability, 43, pp. 1303–1310, 2003.
23. C. W. Tan, Y. C. Chan and N. H. Yeung, “Effect of autoclave test on anisotropic conductive joints,” Microelectronics Reliability 43, pp. 279-285, 2003.
24. 林佑撰, “BGA錫球接點的機械特性與數值模型.” 碩士論文—國立清華大學動力機械工程研究所, 2001.