研究生: |
賴淑萍 Lai, Shu-Ping, |
---|---|
論文名稱: |
矽奈米線作為觸媒載體之低溫高效能甲醇轉換器研製 Low Operating Temperature POM Reaction Micro-Methanol Reformer with Silicon Nano-Wires Supported Nano-Catalysts |
指導教授: |
曾繁根
Tseng, fan-gang, 錢景常 |
口試委員: |
曾繁根
葉宗洸 吳樸偉 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 微型甲醇轉換器 、矽奈米線 、質子交換膜燃料電池 |
外文關鍵詞: | Methanol micro-reformer, Si nano-wires, PEM fuel cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功研發出一低溫高效能微型甲醇反應器-具矽奈米線結構完全填滿於微流道高度作為POM(Partial Oxidation of Methanol)反應觸媒載體者,更適合作為質子交換膜燃料(Proton Exchange Membrane Fuel cell, PEMFC) 電池前端氫氣供應器,因其可有效提升較低溫操作時之氫氣產率,有利燃料處理器(約180℃~250℃操作,傳統較常使用之SRM反應甲醇反應器操作溫度約>320℃)與較低溫操作(~80℃)之質子交換膜燃料電池結合使用,作為攜帶式3C產品電力。研究中微型甲醇反應器效能提升主要是藉由(1)矽奈米線結構導入微米流道提供大反應面積,(2)硬膜光阻製程發展增進觸媒塗佈均勻性,(3)奈米線結構設計為完全填滿於微流道高度迫使反應氣體與觸媒碰撞發生催化反應,
(4)根據探討觸媒中各成份對觸媒塗佈形貌影響調整觸媒溶液配置,將250℃之氫氣產率由原先3.9*10-8 mole/min提升至1.5*10-6 mole/min,增加了38倍;而較低溫之180℃反應氫氣產率也由2.8*10-8 mole/min提升至8.8*10-7 mole/min,增加了31倍,朝其作為質子交換膜燃料電池之供氫系統使用邁進了一大步。
In this paper, we proposed a new design of a high performance methanol micro-reformer for hydrogen production which integrated low temperature catalysts supported by silicon nano-wires inside micro-channels with multi-inlet and in-parallel channel. Without complicated fabrication process, the reforming performance of micro-reformer with Si nano-wire fully filled channel-passageways in height and length compared to that without nano-wires supported can enhanced by 38 folds more hydrogen yield;and the hydrogen yield at 180 oC and 250 oC are 8.8×10-7 mole/min and 1.5×10-6 mole/min, respectively. The enhancement of this new design micro-reformer was attributed to (1) the large surface area that the Si nano-wires can provided,(2) hard membrane photoresist process which assisted in better catalytic coating morphology,(3) the special design of Si nano-wires fully filled channel-passageways in height and length was expected to be able to force reactive-gases contact with catalysts,(4) the detailed discussions of how the different ingredients in catalysts
solution influence the catalytic coating morphology。
[1] 黃鎮江,”燃料電池”,全華科技圖書股份有限公司
[2] COMSOL, 2007, Simwe中國仿真互動網, http://www.simwe.com/art/tec/2007-06-26/tec0-9-904.shtml, last accessed on October, 28, 2010.
[3] B. Lindstrom, L.J. Pettersson, “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, Int. J. Hydrog. Energy 26 (2001) 923933.
[4] T. Takahashi, M. Inoue, T. Kai, “Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared form amorphous alloys”, Appl. Catal. A 218 (2001) 189-195.
[5] Z. F. Wangm, J. Y. Xi, W. P. Wang, G. X. Lu, J., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures“, Mol. Catal. A: Chemical, 191 (2003) 123-136.
[6] S. Schuyten, E.E. Wolf, “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming” Catal. Lett. 106 (2006) 7-14.
[7] L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures”, Chem. Commun. (2004) 1426-1427.
[8] S. Velu, K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Top. Catal. 22 (2003) 235-244.
[9] T. Shishido, Y. Yamamoto, H. Morioka, K. takehira, “production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, J. Mol. Catal. A: Chem. 268 (2007) 185-194.
[10] D.S. Watkins, in: L.J.M.J. Blomen, M.N.Mugerwa (Eds.), “Fuel Cell Systems”, Plenum Press, New York (1993) p.493.
[11] H. Kahrom, “Proceedings of the European Fuel cell Forum Portable Fuel cell conference”, Lucerne (1999) 159.
[12] 李紹淮,不同的製備及塗佈銅錳鋅觸媒於微型甲醇重組器之研究, (2009)
[13] D. R. Palo, R. A. Dagle, Jamie D. Holladay, “Methanol Steam Reforming for Hydrogen Production”, Chem. Rev. 107 (2007), 3992-4021
[14] H. M. Yang and P. H Liao, “Preparation and activity of Cu/Zno-CNTs nano-catalyst on steam reforming of methanol”, App. Catalysis, 317 (2007), 226-233.
[15] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu,
“Fabrication of Single-Crystalline Silicon Nanowires by Scratching a
Silicon Surface with Catalytic Metal Particles”, Adv. Funct. Mater. 16 (2006) 387-394.
[16] C. Y. Chen, C. S. Wu, C. J. Chou, T. J. Yen, “Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature”, Adv.
Mater. 20 (2008) 3811–3815.
[17] R. W. Lee and S. J. Kim,”Reformer for Fuel Cell,Pub”. No. US20070071661, Pub. Date Mar.29,2007
[18] 陳德銘,陽極氧化鋁模板法製作奈米結構材料及其電子場發射特性研究, (2008)
[19] N. K. Park, G. B. Han, J. D. Lee, S. O. Ryu, T. J. Lee, “The Growth of ZnO Nano-Wire by A Thermal Evaporation Method with Very Small Amount of Oxygen”, Current Applied Physics 6 (2006) 176-181.
[20] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from
Aqueous Solutions”, Adv. Mater. 15 (2003) 464-466.
[21] X. Jiang, T. Herricks, Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Substrates in Air”, Nano Lett. 2 (2002) 1333-1338.
[22] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, “Synthesis of Well-Ordered
CuO Nanofibers by a Self-Catalytic Growth Mechanism”, Appl. Phys. Lett.
82 (2003) 3316–3318.
[23] P.K. Giri, Soumen Dhara, Ritun Chakraborty,“Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays”, Materials Chemistry and Physics 122 (2010) 18–22.
[24] Lionel Vayssieres,“Growth of Arrays Nanorods and Nanowires of ZnO from Aqueous Solutions”, Advanced Material 15 NO.5 March 4 (2003) 464–466.
[25] Y. G. Lin, Y. K. Hsu, S. Y. Chen, Y. K. Lin, L. C. Chen, K. H. Chen,
“Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst”, Angew. Chem..Int. Ed. 48 (2009) 7586–7590.
[26] Sohn et al., International Journal of Hydrogen Energy, 2007.
[27] S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, H. H. Tsai, “Study of operational parameters on the performance of micro PEMFCs with different flow fields”, Energy Conversion and Management 47(2006) 1868-1878
[28] de Souza A, Gonzalez ER. “Influence of the operational parameters on the performance of polymer electrolyte membrane fuel cells with different flow fields”, J. Solid State Electrochem 7 ( 2003) 651-657.
[29] Nguyen TV. “A gas distribution design form proton-exchange- membrane fuel cells”. J. Electrochem Soc 143 (1996) 103-105.
[30] D. Park, T. Kim, S. Kwon, C. Kim, E. Yoon, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells”, Sensors and Actuators A 135 (2007) 58–66.
[31] 王奕勳,使用奈米碳管承載觸媒於微型甲醇重組反應器設計製造與測試, (2009)