簡易檢索 / 詳目顯示

研究生: 王堃宇
Wang, Kun-Yu
論文名稱: 針對不完美通道狀態訊息用於多用戶多輸入單輸出下行網路之傳輸最佳化
Transmit Optimization for Multiuser MISO Downlink Networks with Imperfect Channel State Information
指導教授: 祁忠勇
Chi, Chong-Yung
口試委員: 洪樂文
吳仁銘
王蒞君
吳卓諭
伍紹勳
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 174
中文關鍵詞: 多輸入單輸出下行網路強健性傳輸最佳化凸優化
外文關鍵詞: MISO, Downlink Networks, Robust transmit optimization, Convex optimization
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在 本 論 文 中, 針對多用戶(multiuser) 多輸入單輸出(multiple-input single-output, MISO)下行(downlink)無線通訊系統,我們考慮各種不同的傳輸 最佳化問題,此系統包括多根天線的傳輸端(transmitter)服務多個單天線接收 端(receiver),而且它們共享相同的時間與頻譜資源。在傳輸端可以完美地獲得 接收端的通道狀態訊息(channel state information, CSI)前提下之傳輸設計已 經在文獻中被廣泛地研究。然而,在實際上,由於有限的訓練資源(training resource)或是反饋頻寬(feedback bandwidth),傳輸端的通道狀態訊息誤差是無法避免的。如果將不完美的通道狀態訊息視為完美的通道狀態訊息,如此設計傳輸端,用戶端之間的干擾將無法被適當地消除,將導致用戶端的服務品質(quality of service, QoS)中斷(outage)或是系統性能大幅地下降。近年來,強健性(robust)傳輸設計以對抗通道狀態訊息誤差已經被視為重要的尖端研究挑戰,而且在過去幾年已經受到廣泛的關注。

    在本論文中,在傳輸端只有不完美的通道狀態訊息(亦即,獲得的通道狀態訊息中存在估計誤差)下,我們用最小化傳輸功率或是最大化系統效用(system utility)(例如,加權的傳輸速率和(weighted sum rate))設計傳輸方案,同時用戶端或是系統的效能要求必須滿足。通道狀態訊息誤差模型包括被廣泛使用的複數高斯(Gaussian)隨機向量,或是假設落於一個有界的集合中(稱為不確定集合(uncertainty set))。在第二章到第四章,我們專注於複數高斯通道狀態訊息誤差模型,並且研究在用戶端的服務品質中斷機率限制在指定的數值以下的強健性傳輸設計。此中斷限制的最佳化問題一般非常難解,主要是因為其所牽涉的機率函數不是凸函數(convex function)且沒有閉式表示式。因此,我們可能必須求助近似方法。在第二章和第四章,我們分別針對在單細胞(single-cell)以及兩層異質性網路(two-tier heterogeneous network)的系統開發了幾個新穎易處理的約束方法(restriction approaches)用於解決中斷限制下的傳輸功率最小化問題。此外,我們對所提出方法的效能,複雜度以及可行性(feasibility)之條件也進行嚴謹的分析。雖然各式各樣的子問題所開發的演算法中,若能有閉式解是最好的,但是它們通常僅存在一些特殊的場景。在第三章,我們特別地考慮單用戶(single-user)的場景,假設接收端可藉由所接收到的訓練訊號獲得即時的通道向量(亦即,通道狀態訊息在接收端是不完美的)。我們提出了以最大化中斷傳輸速率(outage rate)(亦即,在滿足給定的中斷機率下之最大可達速率(achievable rate))可得到最佳的訓練功率與資料傳輸策略之閉式解。

    相對地,在第五章,我們考慮有界的通道狀態訊息誤差模型,即假設通道狀
    態訊息誤差是落在某個球型區域中。傳輸設計方法是最大化在所有可能的通道狀
    態訊息誤差中最差的(亦即,最小的)系統效用。此最佳化問題是NP難解的
    (NP-hard),因此任何可以找到最佳解的演算法都可能會遭受到非常高複雜度的
    困境。有鑑於此,對於原本的非凸優化問題,我們進一步提出一個低複雜度的演
    算法可獲得有效率又精確的次佳解(suboptimal solution),以及證明此演算法的收斂性與所獲得的解是Parato最佳解。

    在第二章到第五章的每一個章節中,我們也提供一些模擬的結果用以驗證所
    提出的演算法之效能,及其與現存最先進的演算法做效能的比較。最後,第六章
    做一些結論以及討論未來研究方向。


    Chinese Abstract i Abstract iii Acknowledgments v List of Figures x Mathematical Notations xiii Abbreviations xv 1 Introduction 1 1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Robust Transmit Design . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Heterogeneous Network . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Literature Survey and Chapter Contributions . . . . . . . . . . . . . 7 2 Outage Constrained Robust Transmit Optimization 16 2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Proposed Convex Restriction Approach: An Overview . . . . . . . . . 22 2.2.1 A Restriction Approach for the Rate Outage Constrained Problem 22 2.2.2 Beamforming as Rank-one Solutions . . . . . . . . . . . . . . 23 2.3 Derivation of Convex Restriction Methods . . . . . . . . . . . . . . . 27 2.3.1 Method I: Sphere Bounding . . . . . . . . . . . . . . . . . . . 28 2.3.2 Method II: Bernstein-Type Inequality . . . . . . . . . . . . . . 31 2.3.3 Method III: Decomposition-Based Large Deviation Inequality 34 2.4 Performance Analyses of the Proposed Convex Restriction Methods . 37 2.4.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.2 Relative Tightness Analysis . . . . . . . . . . . . . . . . . . . 40 2.5 Further Discussions on Other Design Formulations . . . . . . . . . . . 43 2.5.1 Using the Proposed Methods to Tackle the Max-Min Fairness Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.2 Using the Proposed Methods to Perform Rate Region Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 I.i.d. Bounded CSI Errors with Unknown Distribution . . . . . . . . 47 2.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 Robust Transmit Optimization with Training: Outage Rate Maxi- mization for Single User Case 63 3.1 Signal Model and Problem Statement . . . . . . . . . . . . . . . . . . 63 3.2 Optimal Transmission Strategy . . . . . . . . . . . . . . . . . . . . . 66 3.2.1 Optimal Training Power Design . . . . . . . . . . . . . . . . . 67 3.2.2 Optimal Transmit Covariance Matrix Design . . . . . . . . . . 69 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Outage Constrained Robust Transmit Optimization in Two-Tier Het- erogeneous Networks 77 4.1 System Model and Problem Statement . . . . . . . . . . . . . . . . . 78 4.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.2 Optimal Beamforming with Perfect CSI . . . . . . . . . . . . 79 4.1.3 Optimal Beamforming with Imperfect CSI . . . . . . . . . . . 80 4.2 No CSI Feedback Scenario . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 Spatially i.i.d. hFF and hMF . . . . . . . . . . . . . . . . . . 85 4.2.2 Feasibility Condition for the Robust Beamforming Problem . . 86 4.3 Partial CSI Feedback Scenario . . . . . . . . . . . . . . . . . . . . . . 87 4.3.1 Spatially i.i.d. hMF and eFF . . . . . . . . . . . . . . . . . . . 89 4.3.2 Spatially Correlated hMF , eFF , and eFM . . . . . . . . . . . . 91 4.4 Optimal Transmission Strategy . . . . . . . . . . . . . . . . . . . . . 95 4.4.1 Problem Generalization . . . . . . . . . . . . . . . . . . . . . 95 4.4.2 Spatially i.i.d. hFF and hMF (No CSI Feedback) . . . . . . . 96 4.4.3 Feasibility Condition for the Proposed Transmission Strategy . 101 4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Robust Transmit Design for Worst-Case Utility Maximization 111 5.1 System Model and Problem Statement . . . . . . . . . . . . . . . . . 112 5.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2 A Low-Complexity WCUM Algorithm . . . . . . . . . . . . . . . . . 117 5.2.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 117 5.2.2 Convergence of the Proposed Algorithm . . . . . . . . . . . . 120 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Conclusions and Future Directions 125 A Proofs of Propositions and Lemmas in Chapter 2 129 A.1 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A.2 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.3 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.5 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 A.6 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 143 B Proofs of Propositions and Lemmas in Chapter 3 145 B.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 B.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 147 C Proofs of Propositions and Lemmas in Chapter 4 150 C.1 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 150 C.2 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 C.3 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 154 D Proofs of Propositions and Lemmas in Chapter 5 157 D.1 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 D.2 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 D.3 SCA-Based Algorithm in Section 5.3 . . . . . . . . . . . . . . . . . . 158 Bibliography 163 Publication List of The Author 173

    [1] A. Jamalipour, T. Wada, and T. Yamazato, “A tutorial on multiple access
    technologies for beyond 3G mobile networks,” IEEE Commun. Mag., vol. 43,
    no. 2, pp. 110–117, Feb. 2005.
    [2] R. Fantacci, F. Chiti, D. Marabissi, G. Mennuti, S. Morosi, and D. Tarchi,
    “Perspectives for present and future CDMA-based communications systems,”
    IEEE Commun. Mag., vol. 43, no. 2, pp. 95–100, Feb. 2005.
    [3] S. Ryu, S. K. Park, D. Oh, G. Sihn, K. Han, and S. Hwang, “Research activities
    on next-generation mobile communications and services in Korea,” IEEE
    Commun. Mag., vol. 43, no. 9, pp. 122–131, Sep. 2005.
    [4] P. Demestichas and V. Stavroulaki, “Issues in introducing resource brokerage
    functionality in B3G composite radio environments,” IEEE Trans. Wireless
    Commun., vol. 11, no. 5, pp. 32–40, Oct. 2004.
    [5] S. Ryu, S. K. Park, D. Oh, G. Sihn, K. Han, and S. Hwang, “Integration of
    spatial processing in the WINNER B3G air interface design,” in Proc. IEEE
    VTC, Melbourne, Australia, May 7-10, 2006, pp. 246-250.
    [6] F. Boccardi, B. Clerckx, A. Ghosh, E. Hardouin, G. J. andngren, K. Kusume,
    E. Onggosanusi, and Y. Tang, “Multiple-antenna techniques in LTE-advanced,”
    IEEE Commun. Mag., vol. 50, no. 3, pp. 114–121, Mar. 2012.
    [7] J. Lee, Y. Kim, H. Lee, B. L. Ng, D. Mazzarese, W. X. J. Liu, and Y. Zhou, “Coordinated
    multipoint transmission and reception in LTE-advanced systems,”
    IEEE Commun. Mag., vol. 50, no. 11, pp. 44–50, Nov. 2012.
    [8] C. S. Park, Y.-P. E. Wang, G. J¨ongren, and D. Hammarwall, “Evolution of
    uplink MIMO for LTE-advanced,” IEEE Commun. Mag., vol. 49, no. 2, pp.
    112–121, Feb. 2011.
    [9] L. Liu, R. Chen, S. Geirhofer, K. Sayana, and Z. Shi, “Downlink MIMO in LTEadvanced:
    SU-MIMO vs. MU-MIMO,” IEEE Commun. Mag., vol. 50, no. 2,
    pp. 140–147, Feb. 2012.
    [10] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast
    scheduling using zero-forcing beamforming,” IEEE Journal on Sel. Areas in
    Comm., vol. 24, no. 3, pp. 528–541, Mar. 2006.
    [11] J. Lee and N. Jindal, “High SNR analysis for MIMO broadcast channels: Dirty
    paper coding versus linear precoding,” IEEE Trans. Inform. Theory, vol. 53,
    no. 12, pp. 4787–4792, Dec. 2007.
    [12] D. J. Love, R. W. H. Jr, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews,
    “An overview of limited feedback in wireless communication systems,” IEEE J.
    Sel. Areas Commun., vol. 26, pp. 1341–1365, Oct. 2008.
    [13] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans.
    Inform. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.
    [14] S. Wagner, R. Couillet, M. Debbah, and D. T. M. Slock, “Large system analysis
    of linear precoding in correlated MISO broadcast channels under limited
    feedback,” IEEE Trans. Inform. Theory, vol. 58, no. 7, pp. 4509–4537, Jul.
    2012.
    [15] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
    achievable rates with downlink training and channel state feedback,” IEEE
    Trans. Inform. Theory, vol. 56, no. 6, pp. 2845–2866, Jun. 2010.
    [16] M. Kobayashi, N. Jindal, and G. Caire, “Training and feedback optimization
    for multiuser MIMO downlink,” IEEE Trans. Commun., vol. 59, no. 8, pp.
    2228–2240, Aug. 2011.
    [17] Y. Xie, C. N. Georghiades, and A. Arapostathis, “Minimum outage probability
    transmission with imperfect feedback for MISO fading channels,” IEEE Trans.
    Wireless Commun., vol. 4, no. 3, pp. 1084–1091, May 2005.
    [18] K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On beamforming
    with finite rate feedback in multiple-antenna systems,” IEEE Trans. Inform.
    Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.
    [19] J. C. Roh and B. D. Rao, “Transmit beamforming in multiple-antenna systems
    with finite rate feedback: A VQ-based approach,” IEEE Trans. Inform. Theory,
    vol. 52, no. 3, pp. 1101–1112, Mar. 2006.
    [20] A. S. Housfater and T. J. Lim, “Outage probability of MISO broadcast systems
    with noisy channel side information,” in Proc. IEEE ASILOMAR 2010, Pacific
    Grove, CA, Nov. 7-10, 2010, pp. 1232-1236.
    [21] M. B. Shenouda and T. N. Davidson, “Convex conic formulations of robust
    downlink precoder designs with quality of service constraints,” IEEE J. Sel.
    Topics in Signal Process., vol. 1, pp. 714–724, Dec. 2007.
    [22] N. Vu˘ci´c and H. Boche, “Robust QoS-constrained optimization of downlink
    multiuser MISO systems,” IEEE Trans. Signal Process., vol. 57, pp. 714–725,
    Feb. 2009.
    [23] M. B. Shenouda and T. N. Davidson, “Nonlinear and linear broadcasting with
    QoS requirements: Tractable approaches for bounded channel uncertainties,”
    IEEE Trans. Signal Process., vol. 57, no. 5, pp. 1936–1947, May 2009.
    [24] G. Zheng, K.-K. Wong, and T.-S. Ng, “Robust linear MIMO in the downlink:
    A worst-case optimization with ellipsoidal uncertainty regions,” EURASIP J.
    Adv. Signal Process., vol. 2008, pp. 1–15, Jun. 2008.
    [25] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Worst-case robust multiuser transmit
    beamforming using semidefinite relaxation: Duality and implications,” in Proc.
    45th Asilomar Conference 2011, Nov. 2011, pp. 1579–1583.
    [26] E. Song, Q. Shi, M. Sanjabi, R.-Y. Sun, and Z.-Q. Luo, “Robust SINRconstrained
    MISO downlink beamforming: When is semidefinite programming
    relaxation tight?” EURASIP J. Wireless Commun. and Net., no. 243, pp. 1–11,
    Apr. 2012.
    [27] M. Razaviyayn, M. Sanjabi, and Z.-Q. Luo, “A stochastic successive minimization
    method for nonsmooth nonconvex optimization with applications to
    transceiver design in wireless communication networks,” pp. 1–26, 2013, available
    on arxiv.org.
    [28] Y. Yang, G. Scutari, and D. P. Palomar, “Parallel stochastic decomposition
    algorithms for multi-agent systems,” in Proc. IEEE SPAWC, Darmstat, Germany,
    June 16-19, 2013, pp. 180–184.
    [29] M. B. Shenouda and T. N. Davidson, “Probabilistically-constrained approaches
    to the design of the multiple antenna downlink,” in Proc. 42nd Asilomar Con-
    ference 2008, Pacific Grove, October 26-29, 2008, pp. 1120–1124.
    [30] ——, “Outage-based designs for multi-user transceivers,” in Proc. IEEE
    ICASSP 2009, Taipei, Taiwan, April 19-24, 2009, pp. 2389–2392.
    [31] M. B. Shenouda, T. N. Davidson, and L. Lampe, “Outage-based design of
    robust Tomlinson-Harashima transceivers for the MISO downlink with QoS
    requirements,” Signal Processing, vol. 93, no. 12, pp. 3341–3352, Dec. 2013.
    [32] A. Ben-Tal and A. Nemirovski, “On safe tractable approximations of chanceconstrained
    linear matrix inequalities,” Math. Oper. Res., vol. 1, pp. 1–25, Feb.
    2009.
    [33] A. M.-C. So, “Moment inequalities for sums of random matrices and their applications
    in optimization,” Mathematical Programming, Series A, vol. 130, no. 1,
    pp. 125–151, 2011.
    [34] S.-S. Cheung, A. M.-C. So, and K. Wang, “Linear matrix inequalities with
    stochastically dependent perturbations and applications to chance–constrained
    semidefinite optimization,” SIAM Journal on Optimization, vol. 22, no. 4, pp.
    1394–1430, 2012.
    [35] N. Vu˘ci´c and H. Boche, “A tractable method for chance-constrained power
    control in downlink multiuser MISO systems with channel uncertainty,” IEEE
    Signal Process. Letters, vol. 16, no. 5, pp. 346–349, Apr. 2009.
    [36] A. Gr¨undinger, R. Bethenod, M. Joham, M. Riemensberger, and W. Utschick,
    “Optimal power allocation for the chance-constrained vector broadcast channel
    and rank-one channel approximation,” in Proc. IEEE SPAWC 2013, Darmstadt,
    Germany, Jun. 16-19, 2013, pp. 31–35.
    [37] F. Sohrabi and T. N. Davidson, “Coordinate update algorithms for robust power
    loading for the MISO downlink with outage constraints and Gaussian uncertainties,”
    in Proc. IEEE ICASSP, Vancouver, BC, Canada, May 26-31, 2013,
    pp. 4769–4773.
    [38] L. Huang, G. Zhu, and X. Du, “Cognitive femtocell networks: An opportunistic
    spectrum access for future indoor wireless coverage,” IEEE Trans. Wireless
    Commun., vol. 20, no. 2, pp. 44–51, Apr. 2013.
    [39] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells:
    Past, present, and future,” IEEE J. Sel. Areas Commun., vol. 30, no. 3,
    pp. 497–508, Apr. 2012.
    [40] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: A
    survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67, Sep. 2008.
    [41] G. Roche, A. Valcarce, D. L´opez-P´erez, and J. Zhang, “Access control mechanisms
    for femtocells,” IEEE Commun. Mag., vol. 48, no. 1, pp. 33–39, Jan.
    2010.
    [42] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo,
    O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE
    Wireless Commun., vol. 18, no. 3, pp. 10–21, Jun. 2011.
    [43] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference management
    in femtocells,” IEEE Commun. Surveys & Tutorials, vol. 15, no. 1, pp. 293–311,
    1st Quarter 2013.
    [44] A. Golaup, M. Mustapha, and L. B. Patanapongpibul, “Femtocell access control
    strategy in UMTS and LTE,” IEEE Commun. Mag., vol. 47, no. 9, pp. 117–123,
    Sep. 2009.
    [45] V. Chandrasekhar, J. G. Andrews, T. Muharemovic, Z. Shen, and A. Gatherer,
    “Power control in two-tier femtocell networks,” IEEE Trans. Wireless Com-
    mun., vol. 8, no. 8, pp. 4316–4328, Aug. 2009.
    [46] Y. Jeong, T. Q. S. Quek, and H. Shin, “Beamforming optimization for multiuser
    two-tier networks,” J. Commun. and Networks, vol. 13, no. 4, pp. 327–338, Aug.
    2011.
    [47] B. Hassibi and B. M. Hochwald, “How much training is needed in multipleantenna
    wireless links,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951–963,
    Apr. 2003.
    [48] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Bell Labs Tech. J.,
    vol. 10, no. 6, pp. 585–595, Nov./Dec. 1999.
    [49] E. A. Jorswieck and H. Boche, “Outage probability in multiple antenna systems,”
    European Trans. Telecommun., vol. 18, no. 3, pp. 217–233, Apr. 2007.
    [50] ——, “Optimal transmission strategies and impact of correlation in multiantenna
    systems with different types of channel state information,” IEEE Trans.
    Signal Process., vol. 52, no. 12, pp. 3440–3453, Dec. 2004.
    [51] G. J. Sz´ekely and N. K. Bakirov, “Extremal probabilities for Gaussian quadratic
    forms,” Probability Theory and Related Fields, vol. 126, no. 2, pp. 184–202, Jun.
    2003.
    [52] A.Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization
    for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–
    176, Jan. 2006.
    [53] F. Negro, I. Ghauri, and D. T. M. Slock, “Beamforming for the underlay cognitive
    MISO interference channel via UL-DL duality,” in Proc. CROWNCOM
    2010, Jun. 9-11, 2010, pp. 1–5.
    [54] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamforming,”
    Chapter 18 in Handbook of Antennas in Wireless Communications, L. C.
    Godara, Ed., CRC Press, Aug. 2001.
    [55] R. Mo, T. Q. S. Quek, and R. W. H. Jr., “Robust beamforming and power
    control for two-tier femtocell networks,” in Proc. IEEE VTC 2011, Budapest,
    Hungary, May 15-18, 2011, pp. 1–5.
    [56] K. T. Phan, S. A. Vorobyov, N. D. Sidiropoulos, and C. Tellambura, “Spectrum
    sharing in wireless networks via QoS-aware secondary multicast beamforming,”
    IEEE Trans. Sig. Process., vol. 57, no. 6, pp. 2323–2335, Jun. 2009.
    [57] E. A. Gharavol, Y.-C. Liang, and K. Mouthaan, “Robust downlink beamforming
    in multiuser MISO cognitive radio networks with imperfect channel-state
    information,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2852–2860, Jul.
    2010.
    [58] D.-C. Oh, H.-C. Lee, and Y.-H. Lee, “Power control and beamforming for femtocells
    in the presence of channel uncertainty,” IEEE Trans. Veh. Technol.,
    vol. 60, no. 6, pp. 2545–2554, Jul. 2011.
    [59] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over
    symmetric cones,” Optim. Method Softw., vol. 11-12, pp. 625–653, 1999.
    [60] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,”
    http://cvxr.com/cvx, 2011.
    [61] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge
    Univ. Press,, 2004.
    [62] Y. Huang and D. P. Palomar, “Rank-constrained separable semidefinite programming
    with applications to optimal beamforming,” IEEE Trans. Signal
    Process., vol. 58, no. 2, pp. 664–678, Feb. 2010.
    [63] L. Liu, R. Zhang, and K.-C. Chua, “Achieving global optimality for weighted
    sum-rate maximization in the K-user Gaussian interference channel with multiple
    antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1933–1945,
    May 2012.
    [64] S. Joshi, P. Weeraddana, M. Codreanu, and M. Latva-aho, “Weighted sum-rate
    maximization for MISO downlink cellular networks via branch and bound,”
    IEEE Trans. Signal Process., vol. 60, no. 4, pp. 2090–2095, Apr. 2012.
    [65] E. Bj¨ornson, G. Zheng, M. Bengtsson, and B. Ottersten, “Robust monotonic
    optimization framework for multicell MISO systems,” IEEE Trans. Signal Pro-
    cess., vol. 60, no. 5, pp. 2508–2523, May 2012.
    [66] E. Bj¨ornson and E. Jorswieck, “Optimal resource allocation in coordinated
    multi-cell systems,” Foundations and Trends in Commun. and Inf. Theory, vol.
    2-3, no. 9, pp. 113–381, 2013.
    [67] Z.-Q. Luo and S. Zhang, “Dynamic spectrum management: Complexity and
    duality,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp. 57–73, Feb.
    2008.
    [68] C. T. K. Ng and H. Huang, “Linear precoding in cooperative MIMO cellular
    networks with limited coordination clusters,” IEEE J. Sel. Areas Commun.,
    vol. 28, no. 9, pp. 1446–1454, Dec. 2010.
    [69] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE
    approach to distributed sum-utility maximization for aMIMO interfering broadcast
    channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep.
    2011.
    [70] L.-N. Tran, M. F. Hanif, A. T¨olli, and M. Juntti, “Fast converging algorithm
    for weighted sum rate maximization in multicell MISO downlink,” IEEE Trans.
    Signal Process. Lett., vol. 19, no. 12, pp. 872–875, Dec. 2012.
    [71] A. Wiesel, Y. C. Eldar, and S. Shamai, “Optimization of the MIMO compound
    capacity,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 1094–1101, Mar.
    2007.
    [72] K.-Y.Wang, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “A semidefinite relaxation
    based conservative approach to robust transmit beamforming with probabilistic
    SINR constraints,” in Proc. 18th EUSIPCO, Aalborg, Denmark, Aug. 23-27,
    2010, pp. 407–411.
    [73] K.-Y. Wang, T.-H. Chang, W.-K. Ma, A. M.-C. So, and C.-Y. Chi, “Probabilistic
    SINR constrained robust transmit beamforming: A Bernstein-type inequality
    based conservative approach,” in Proc. IEEE ICASSP 2011, Czech, May
    22-27, 2011, pp. 3080–3083.
    [74] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Outage
    constrained robust transmit optimization for multiuser MISO downlinks:
    Tractable approximations by conic optimization,” submitted to IEEE Trans.
    Signal Process., 2014.
    [75] ——, “Further simulation results for “Outage constrained robust transmit optimization
    for multiuser MISO downlinks: Tractable approximations by conic
    optimization”,” Technical Report, Institute of Communications Engineering,
    National Tsing Hua University, Taiwan, R.O.C., 2014.
    [76] K.-Y. Wang, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Optimal transmission
    strategy for outage rate maximization in MISO fading channels with training,”
    in Proc. IEEE ICASSP 2012, Kyoto, Japan, Mar. 25-30, 2012, pp. 2945–2948.
    [77] K.-Y. Wang, N. Jacklin, Z. Ding, and C.-Y. Chi, “Outage constrained transmission
    optimization for MISO two-tier femtocell networks,” in Proc. IEEE ICC,
    Budapest, Hungary, Jun. 9-13, 2013, pp. 3588-3592.
    [78] ——, “RobustMISO transmit optimization under outage-based QoS constraints
    in two-tier heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 12,
    no. 4, pp. 1883–1897, Apr. 2013.
    [79] K.-Y.Wang, H.Wang, Z. Ding, and C.-Y. Chi, “A low-complexity algorithm for
    worst-case utility maximization in multiuser MISO downlink,” in Proc. IEEE
    VTC-Fall, Las Vegas, USA, Sep. 2-5, 2013, pp. 1-5.
    [80] A.Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization
    for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–
    176, Jan. 2006.
    [81] M. Mohseni, R. Zhang, and J. M. Cioffi, “Optimized transmission for fading
    multiple-access and broadcast channels with multiple antennas,” IEEE Journal
    on Sel. Areas in Commun., vol. 24, no. 8, pp. 1627–1639, Aug. 2006.
    [82] D. Marco and D. L. Neuhoff, “The validity of the additive noise model for
    uniform scalar quantizers,” IEEE Trans. Inform. Theory, vol. 51, no. 5, pp.
    1739–1755, May 2005.
    [83] M. Payar´o, A. Pascual-Iserte, and M. ´ Angel Lagunas, “Robust power allocation
    designs for multiuser and multiantenna downlink communication systems
    through convex optimization,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1390–
    1401, Sep. 2007.
    [84] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamforming,”
    Chapter 18 in Handbook of Antennas in Wireless Communications, L. C.
    Godara, Ed., CRC Press, Aug. 2001.
    [85] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and
    B. Ottersten, “Convex optimization-based beamforming,” IEEE Signal Process.
    Mag., vol. 27, no. 3, pp. 62–75, May 2010.
    [86] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming
    problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53,
    pp. 18–28, Jan. 2004.
    [87] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization, ser. Princeton
    Series in Applied Mathematics. Princeton, NJ: Princeton University Press,
    2009.
    [88] S. X. Wu, W.-K. Ma, and A. M.-C. So, “Physical-layer multicasting by stochastic
    transmit beamforming and Alamouti space-time coding,” IEEE Trans. Sig-
    nal Process., vol. 61, no. 17, pp. 4230–4245, 2013.
    [89] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
    of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27,
    no. 3, pp. 20–34, May 2010.
    [90] Z.-Q. Luo and T.-H. Chang, “SDP relaxation of homogeneous quadratic optimization:
    Approximation bounds and applications,” in Convex Optimization in
    Signal Processing and Communications, D. P. Palomar and Y. C. Eldar, Eds.
    New York: Cambridge University Press, 2010, pp. 117–165.
    [91] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge
    University Press, 2005.
    [92] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained
    programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2006.
    [93] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear programming problems
    contaminated with uncertain data,” Math. Prog., Ser. A, vol. 88, pp.
    411–424, 2000.
    [94] D. Bertsimas and M. Sim, “Tractable approximations to robust conic optimization
    problems,” Math. Prog., Ser. B, vol. 107, pp. 5–36, 2006.
    [95] A. Pascual-Iserte, D. P. Palomar, A. I. Perez-Neira, and M. A. Lagunas, “A
    robust maximin approach for MIMO communications with imperfect channel
    state information based on convex optimization,” IEEE Trans. Signal Process.,
    vol. 54, no. 1, pp. 346–360, Jan. 2006.
    [96] S. Janson, “Large deviations for sums of partly dependent random variables,”
    Random Structures and Algorithms, vol. 24, no. 3, pp. 234–248, 2004.
    [97] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Anal-
    ysis, Algorithms, and Engineering Applications. Philadelphia: MPS-SIAM
    Series on Optimization, SIAM, 2001.
    [98] M. X. Goemans and D. P. Williamson, “Approximation algorithms for Max–
    3–Cut and other problems via complex semidefinite programming,” Journal of
    Computer and System Sciences, vol. 68, no. 2, pp. 442–470, 2004.
    [99] R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,”
    IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5450–5458, 2010.
    [100] T. F. Wong and B. Park, “Training sequence optimization in MIMO systems
    with colored interference,” IEEE Trans. Commun., vol. 52, no. 11, pp. 1939–
    1947, Nov. 2004.
    [101] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: A
    study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal
    Processing, vol. 54, no. 3, pp. 884–893, Mar. 2006.
    [102] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO
    channels with channel estimation error,” IEEE Trans. Inf. Theory, vol. 52,
    no. 5, pp. 2203–2214, May 2006.
    [103] M. Yavuz, F. Meshkati, S. Nanda, A. Pokhariyal, N. Johnson, B. Raghothaman,
    and A. Richardson, “Interference management and performance analysis of
    UMTS/HSPA+ femtocells,” IEEE Commun. Mag., vol. 47, no. 9, pp. 102–109,
    Sep. 2009.
    [104] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of
    MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 1437–1450,
    June 2003.
    [105] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited
    fading wireless channels with outage-probability specifications,” IEEE Trans.
    Wireless Commun., vol. 1, no. 1, pp. 46–55, Jan. 2002.
    [106] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and
    B. Ottersten, “Convex optimization-based beamforming,” IEEE Signal Process.
    Mag., vol. 27, no. 3, pp. 62–75, May 2010.
    [107] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
    of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27,
    no. 3, pp. 20–34, May 2010.
    [108] M. K. Simon, Probability Distributions Involving Gaussian Random Variables:
    A Handbook for Engineers and Scientists. Boston, MA: Kluwer, 2002.
    [109] J. Proakis, Digital Communications. New York: McGraw-Hill, 1983.
    [110] Y. Sun, A. Baricz, and S. Zhou, “On the monotonicity, log-concavity, and tight
    bounds of the generalized Marcum and Nuttall q-functions,” IEEE Trans. Inf.
    Theory, vol. 56, no. 3, pp. 1166–1186, Mar. 2010.
    [111] M. Vu and A. Paulraj, “MIMO wireless linear precoding,” IEEE Sig. Process.
    Mag., vol. 24, no. 5, pp. 86–105, Sep. 2007.
    [112] Y. Xie, C. N. Georghiades, and A. Arapostathis, “Minimum outage probability
    transmission with imperfect feedback for MISO fading channels,” IEEE Trans.
    Wireless Commun., vol. 4, no. 3, pp. 1084–1091, May 2005.
    [113] A. Rubinov, H. Tuy, and H. Mays, “An algorithm for monotonic global optimization
    problems,” Optimization, vol. 49, pp. 205–221, 2001.
    [114] Y.-J. Zhang, L. Qian, and J. Huang, “Monotonic optimization in communication
    and networking systems,” Foundations and Trends in Networking, vol. 7,
    no. 1, pp. 1–75, 2013.
    [115] I. Bechar, “A Bernstein-type inequality for stochastic processes of quadratic
    forms of Gaussian variables,” 2009, preprint, available on http://arxiv.org/abs/
    0909.3595.
    [116] L. Birg´e and P. Massart, “Minimum contrast estimators on sieves: exponential
    bounds and rates of convergence,” Bernoulli, vol. 4, no. 3, pp. 329–375, 1998.
    [117] S. Boyd and L. E. Ghaoui, “Method of centers for minimizing generalized eigenvalues,”
    Linear Algebra Appl., vol. 188, pp. 63–111, 1993.
    [118] K. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer
    Science Applications. John Wiley & Sons, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE