簡易檢索 / 詳目顯示

研究生: 陳詩欣
Chen, Hsih Hsin
論文名稱: 台灣華人第二補體成分基因多型性與全身性紅斑性狼瘡的關聯分析
Association of complement component 2 polymorphism with clinical features of systemic lupus erythematosus in a Taiwanese population
指導教授: 李寬容
Lee, Kuan Rong
陳得源
Chen, Der Yuan
口試委員: 蔡麗忍
Tsai, Li Jen
張偉嶠
Chang, Wei Chiao
萬磊
Wan, Lei
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 57
中文關鍵詞: 抗心磷脂質抗體第二補體成分光敏感性單一核苷酸多型性全身性紅斑性狼瘡
外文關鍵詞: anticardiolipin antibody, complement component 2, photosensitivity, single-nucleotide polymorphism, systemic lupus erythematosus
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 補體系統屬先天性免疫(innate immunity),由一群未被激活的血漿蛋白組成,主要參與由免疫複合體媒介的免疫反應。補體系統的活化有三條路徑:古典路徑(classical pathway)由抗原與抗體先行結合所引起;甘露糖結合凝集素路徑(mannose-binding lectin pathway)由補體成分與微生物表面特定醣分子結合引起;替代路徑(alternative pathway)為補體成分直接與微生物細胞壁成分結合所致;補體系統的生理作用如下:(一)清除免疫複合體(二)移除凋亡細胞(三)防禦病原菌感染(四)引起局部發炎反應(五)調節適應性免疫系統(adaptive immunity)。
    當補體反應不足或補體成分缺乏時,會使得凋亡細胞碎片無法順利及時清除,造成自體抗原過度暴露進而導致自體免疫疾病的發生,如果缺乏反應路徑上較早期的補體成分則疾病發生機率會上升、病況嚴重程度也會加劇。依據先前紅斑性狼瘡致病機轉的研究,針對長期性發炎症狀、大量自體抗體形成、免疫複合體的沉積現象、顯著相關的染色體區域及老鼠遺傳模式,挑選出十一個候選基因,包括IL1B、IL1RN、LTA、TNF-α、LTB、C2、C4、PDCD1、FCGR2A、FCGR3A及FASLG。第二補體成分歸屬於古典路徑,經由酵素激活後能與第四補體成分(C4)組成第三補體成分(C3)的轉化酶(convertase)主導後續的連鎖反應。另有研究顯示當第二補體成分蛋白缺乏時,病患會表現出全身性紅斑性狼瘡的症狀,以上結果使我們確信第二補體成分對於紅斑性狼瘡臨床病症應有其相關的重要性。
    本研究探討的主題:第二補體成分基因多型性與紅斑性狼瘡臨床表徵的關聯性分析;第二補體成分基因的單一核苷酸多型性挑選主要依據美國國家生物技術與資訊中心(NCBI)的資料庫,在啟動子區域及可轉譯出蛋白質區域作搜尋,著重於轉錄因子結合或氨基酸序列改變的候選單一核苷酸多型性,選擇三個內含子區域的單一核苷酸多型性(intronic SNPs:rs2844455、rs3130681、rs2734335)及三個外顯子區域的單一核苷酸多型性(exonic SNPs:rs1042663、rs1042664、rs4151648);利用連鎖不平衡檢定並挑選小等位基因频率在病患組具有意義者(minor allele frequency > 5%),最後決定了位於內含子區域(GC-rich region)的單一核苷酸多型性(SNP rs2844455)依基因型與病徵、基因表現情形作後續分析。
    首先完成病患資料建檔,包括臨床症狀、腎臟病徵、全血液檢查、補體成分濃度及活性分析、自體抗體種類檢測,接著為基因型之鑑定及基因表現之定量。結果顯示與正常人相互比較下,有較高頻率的AA基因型會出現在病患組(22.1% vs. 9.5%,P<0.05);A對偶基因在病患組的頻率則更高(40.5% vs. 28.4%,P<0.05)。
    針對紅斑性狼瘡病人,A對偶基因與毛髮脫落、皮膚光敏感性、抗心磷脂質抗體之存在均有顯著相關;反之,G對偶基因與這些病症則為顯著不相關。基因表現的定量分析(qPCR),可發現第二補體成分基因在病患組的相對表現情形(relative mRNA level)明顯高於正常人;再依個別基因型與相對表現量進一步分析可以發現,若與GG基因型病人(中位數:35.76,四分位距:19.33-49.71)相比,AA基因型病人(中位數:18.86,四分位距:11.36-22.43,P=0.002)或AG基因型病人(中位數:18.38,四分位距:13.13-28.82,P=0.004)其第二補體基因轉錄情形皆為明顯降低;在RNA轉錄異構體(transcript isoforms)的定性分析(RT-PCR)中,能看到所檢測的異構體種類在病人與正常人的表現不論在型式或比例上都有差異;另外分析了第二補體成分的血清濃度,結果顯示病人的血清濃度明顯低於正常人,依基因型分組則發現血清中補體濃度與基因型沒有顯著相關。
    根據以上的結果,我們知道位於第二補體成分基因的單一核苷酸多型性(SNP rs2844455)是一個在基因轉錄表現上具調控功能的位點,不僅影響基因整體的表現量與異構體種類,也明顯與臨床病徵相關如毛髮脫落、皮膚光敏感症狀及抗心磷脂質抗體的產生。
    本研究以台灣華人族群遺傳背景為基礎探討第二補體成分基因多型性與全身性紅斑性狼瘡病徵之間的關聯性,我們將A對偶基因歸納為引發紅斑性狼瘡的危險因子,而G對偶基因較常出現於正常人及沒有明顯症狀的病人,相對於A對偶基因的高風險性,G對偶基因應該是一個能對抗疾病的保護因子。


    The complement system comprises a large number of plasma proteins participating in pathogen defense, apoptotic cell removal, immune-complex clearance and inflammatory response of innate immunity; it also has regulatory potencies affecting B cell maturation and altering T cell function.
    Impaired complement function or complement deficiency is believed to induce defective clearance of apoptotic cells to drive the autoimmunity in systemic lupus erythematosus (SLE). Complement component 2 (C2), an early member of the classical complement pathway, is correlated with systemic manifestations of SLE. We hypothesize that C2 polymorphism may confer genetic susceptibility to complement dysfunction in SLE so we aim to investigate the clinical and serological associations of C2 variants in Taiwanese patients with SLE.
    The single-nucleotide polymorphisms (SNPs) were selected according to the NCBI dbSNP database and analyzed using the Genomatix software suite; we also performed computational calculations to estimate the linkage disequilibrium (LD) relationships for effective selection including three intronic SNPs (rs2844455, rs3130681 and rs2734335) and three exonic SNPs (rs1042663, rs1042664 and rs4151648). These SNP allele frequencies were tested in normal control subjects; upon comparison with the allele frequency in SLE patients, if the minor allele frequency (MAF) exceeded 5%, the SNPs were chosen for further study.
    The rs2844455 located in the GC-rich region of C2 gene was genotyped by direct sequencing in 95 SLE patients and 95 matched normal control subjects. The gene expression profiles were generated by quantitative real-time PCR (qPCR) and reverse transcription PCR (RT-PCR); the serum C2 levels were determined using commercial ELISA tests.
    Our results showed that SLE patients had significantly higher frequencies of the AA genotype (22.1% vs. 9.5%, P<0.05) and the A allele (40.5% vs. 28.4%, P<0.05) when compared with normal control subjects. The A allele was strongly associated with the occurrence of hair loss, photosensitivity and anticardiolipin antibodies; whereas the G allele was associated with lower frequencies of these clinical presentations.
    The relative expression levels of C2 mRNA were significantly lower in patients with the AA genotype [median: 18.86, interquartile range (IQR): 11.36-22.43, P=0.002] and the AG genotype (18.38, IQR: 13.13-28.82, P=0.004) than in those with the GG genotype (35.76, IQR: 19.33-49.71). Differential expression patterns of C2 gene were demonstrated while the gel showed that the banding patterns and their intensity were obviously related to the genetic variants in patients; however, serum protein assays showed no significant connection existed between rs2844455 genotypes and serum C2 level in SLE patients (n=10 for each genotype; ANOVA F =0.071, P>0.05).
    As expected, we confirmed the A allele as a risk factor for SLE development in a Taiwanese population, in contrast, the G allele might be a protective factor against the pathogenic autoantibody formation and cutaneous manifestations in SLE patients.

    中文摘要 I Abstract IV Abbreviations VI Introduction General concept of systemic lupus erythematosus 1 External factors for developing or exacerbating SLE 2 1. Environmental risk factors 2 2. Drugs 2 3. Virus infections 3 4. Lifestyle factors 4 Internal factors for developing SLE 5 1. Hormonal influences 5 2. Genetic basis 7 SLE: a systemic autoantibody-mediated disease 8 Classical complement pathway 9 Complement deficiency and SLE 10 Background of the present study 12 Material and Methods Collection of SLE patients and healthy volunteers 14 Estimation of C2 rs2844455 allele frequencies 14 Relative quantification of C2 mRNA 15 Determination of C2 isoform expression patterns 16 Analysis of serum C2 levels 17 Statistical analyses 17 Results Clinical characteristics of SLE patients 19 Genotyping of C2 rs2844455 in SLE patients and healthy subjects 19 Associations of C2 rs2844455 with clinical manifestations and serological findings 19 Differential C2 mRNA expression levels in SLE patients and healthy subjects 20 Comparison of C2 isoform expression patterns between SLE patients and healthy subjects 21 Serum C2 protein quantified by ELISA 22 Discussion Pathogenic involvement of C2 rs2844455 in SLE 24 Strong LD in the MHC region 25 Epigenetic characteristics of C2 rs2844455 26 Discrepancy between C2 gene expression and serum levels 26 Gender-specific effect in C2 gene expression 27 Perspective 29 Conclusion 30 References 31 Figures 45 Tables 49 Appendix 57

    1. Marshall E. Lupus: mysterious disease holds its secrets tight. Science. 2002;296:689-91.
    2. Kyttaris VC. Systemic lupus erythematosus: from genes to organ damage. Methods Mol Biol. 2010;662:265-83.
    3. Popescu A, Kao AH. Neuropsychiatric systemic lupus erythematosus. Current neuropharmacology. 2011;9:449-57.
    4. Nowling TK, Gilkeson GS. Mechanisms of tissue injury in lupus nephritis. Arthritis research & therapy. 2011;13:250.
    5. Mayadas TN, Tsokos GC, Tsuboi N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation. 2009;120:2012-24.
    6. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis and rheumatism. 1982;25:1271-7.
    7. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and rheumatism. 1997;40:1725.
    8. Johnson AE, Gordon C, Palmer RG, Bacon PA. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis and rheumatism. 1995;38:551-8.
    9. Chiu YM, Lai CH. Nationwide population-based epidemiologic study of systemic lupus erythematosus in Taiwan. Lupus. 2010;19:1250-5.
    10. Caricchio R, McPhie L, Cohen PL. Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J Immunol. 2003;171:5778-86.
    11. Kuhn A, Herrmann M, Kleber S, et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis and rheumatism. 2006;54:939-50.
    12. Hua-Li Z, Shi-Chao X, De-Shen T, Dong L, Hua-Feng L. Seasonal distribution of active systemic lupus erythematosus and its correlation with meteorological factors. Clinics (Sao Paulo). 2011;66:1009-13.
    13. Sonnenschein C, Soto AM. An updated review of environmental estrogen and androgen mimics and antagonists. The Journal of steroid biochemistry and molecular biology. 1998;65:143-50.
    14. Ahmed SA. The immune system as a potential target for environmental estrogens (endocrine disrupters): a new emerging field. Toxicology. 2000;150:191-206.
    15. Inadera H. The immune system as a target for environmental chemicals: Xenoestrogens and other compounds. Toxicology letters. 2006;164:191-206.
    16. Zandman-Goddard G, Solomon M, Rosman Z, Peeva E, Shoenfeld Y. Environment and lupus-related diseases. Lupus. 2012;21:241-50.
    17. Petri M, Kim MY, Kalunian KC, et al. Combined oral contraceptives in women with systemic lupus erythematosus. The New England journal of medicine. 2005;353:2550-8.
    18. Cravioto MD, Jimenez-Santana L, Mayorga J, Seuc AH. Side effects unrelated to disease activity and acceptability of highly effective contraceptive methods in women with systemic lupus erythematosus: a randomized, clinical trial. Contraception. 2014;90:147-53.
    19. Kaur K, Zheng NY, Smith K, et al. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination. PloS one. 2015;10:e0125618.
    20. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nature medicine. 2005;11:85-9.
    21. James JA, Scofield RH, Harley JB. Lupus humoral autoimmunity after short peptide immunization. Annals of the New York Academy of Sciences. 1997;815:124-7.
    22. Riemekasten G, Marell J, Trebeljahr G, et al. A novel epitope on the C-terminus of SmD1 is recognized by the majority of sera from patients with systemic lupus erythematosus. The Journal of clinical investigation. 1998;102:754-63.
    23. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proceedings of the National Academy of Sciences of the United States of America. 1993;90:8479-83.
    24. Larsen M, Sauce D, Deback C, et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS pathogens. 2011;7:e1002328.
    25. Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23:596-605.
    26. Rasmussen NS, Draborg AH, Nielsen CT, Jacobsen S, Houen G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scandinavian journal of rheumatology. 2015;44:143-9.
    27. Ramos-Casals M, Font J, Garcia-Carrasco M, et al. Hepatitis C virus infection mimicking systemic lupus erythematosus: study of hepatitis C virus infection in a series of 134 Spanish patients with systemic lupus erythematosus. Arthritis and rheumatism. 2000;43:2801-6.
    28. Sugiyama D, Nishimura K, Tamaki K, et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Annals of the rheumatic diseases. 2010;69:70-81.
    29. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. Journal of autoimmunity. 2010;34:J258-65.
    30. Rubin IM, Dabelsteen S, Nielsen MM, et al. Repeated exposure to hair dye induces regulatory T cells in mice. The British journal of dermatology. 2010;163:992-8.
    31. Wang J, Kay AB, Fletcher J, Formica MK, McAlindon TE. Is lipstick associated with the development of systemic lupus erythematosus (SLE)? Clinical rheumatology. 2008;27:1183-7.
    32. Mak A, Tay SH. Environmental factors, toxicants and systemic lupus erythematosus. International journal of molecular sciences. 2014;15:16043-56.
    33. Pawlak CR, Witte T, Heiken H, et al. Flares in patients with systemic lupus erythematosus are associated with daily psychological stress. Psychotherapy and psychosomatics. 2003;72:159-65.
    34. Ward MM, Marx AS, Barry NN. Psychological distress and changes in the activity of systemic lupus erythematosus. Rheumatology (Oxford). 2002;41:184-8.
    35. Borges MC, dos Santos Fde M, Telles RW, Lanna CC, Correia MI. Nutritional status and food intake in patients with systemic lupus erythematosus. Nutrition. 2012;28:1098-103.
    36. Kao CH, Ho YJ, Lan JL, Changlai SP, Liao KK, Chieng PU. Discrepancy between regional cerebral blood flow and glucose metabolism of the brain in systemic lupus erythematosus patients with normal brain magnetic resonance imaging findings. Arthritis and rheumatism. 1999;42:61-8.
    37. Wu T, Xie C, Han J, et al. Metabolic disturbances associated with systemic lupus erythematosus. PloS one. 2012;7:e37210.
    38. Chung CP, Long AG, Solus JF, et al. Adipocytokines in systemic lupus erythematosus: relationship to inflammation, insulin resistance and coronary atherosclerosis. Lupus. 2009;18:799-806.
    39. Borba EF, Bonfa E, Vinagre CG, Ramires JA, Maranhao RC. Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis and rheumatism. 2000;43:1033-40.
    40. Chung CP, Avalos I, Oeser A, et al. High prevalence of the metabolic syndrome in patients with systemic lupus erythematosus: association with disease characteristics and cardiovascular risk factors. Annals of the rheumatic diseases. 2007;66:208-14.
    41. Bhalla AK. Hormones and the immune response. Annals of the rheumatic diseases. 1989;48:1-6.
    42. Kaliterna DM, Perkovic D, Radic M, Krstulovic DM, Boric K, Marinovic I. Sex hormones, immune disorders, and inflammatory rheumatic diseases. Reumatizam. 2014;61:17-22.
    43. Bove R. Autoimmune diseases and reproductive aging. Clin Immunol. 2013;149:251-64.
    44. Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathological perspective. The American journal of pathology. 2008;173:600-9.
    45. Ansar Ahmed S, Penhale WJ, Talal N. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. The American journal of pathology. 1985;121:531-51.
    46. Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ. Estrogen blocks early T cell development in the thymus. Am J Reprod Immunol. 1996;36:269-77.
    47. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. The Journal of clinical investigation. 2002;109:1625-33.
    48. Monteiro R, Teixeira D, Calhau C. Estrogen signaling in metabolic inflammation. Mediators of inflammation. 2014;2014:615917.
    49. Roubinian JR, Papoian R, Talal N. Androgenic hormones modulate autoantibody responses and improve survival in murine lupus. The Journal of clinical investigation. 1977;59:1066-70.
    50. Lavalle C, Loyo E, Paniagua R, et al. Correlation study between prolactin and androgens in male patients with systemic lupus erythematosus. The Journal of rheumatology. 1987;14:268-72.
    51. Lahita RG, Bradlow HL, Kunkel HG, Fishman J. Alterations of estrogen metabolism in systemic lupus erythematosus. Arthritis and rheumatism. 1979;22:1195-8.
    52. Michel M, Johanet C, Meyer O, et al. Familial lupus erythematosus. Clinical and immunologic features of 125 multiplex families. Medicine. 2001;80:153-8.
    53. Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. Journal of autoimmunity. 2013;41:25-33.
    54. Moser KL, Kelly JA, Lessard CJ, Harley JB. Recent insights into the genetic basis of systemic lupus erythematosus. Genes and immunity. 2009;10:373-9.
    55. Wakeland EK, Liu K, Graham RR, Behrens TW. Delineating the genetic basis of systemic lupus erythematosus. Immunity. 2001;15:397-408.
    56. Darabos C, Harmon SH, Moore JH. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2014:188-99.
    57. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Seminars in arthritis and rheumatism. 2004;34:501-37.
    58. Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Current opinion in immunology. 1995;7:812-8.
    59. Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. The New England journal of medicine. 2003;349:1526-33.
    60. Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis research & therapy. 2011;13:202.
    61. Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell death and differentiation. 2008;15:243-50.
    62. Nauta AJ, Trouw LA, Daha MR, et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. European journal of immunology. 2002;32:1726-36.
    63. Martin M, Leffler J, Blom AM. Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells. The Journal of biological chemistry. 2012;287:33733-44.
    64. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB. Complement-dependent clearance of apoptotic cells by human macrophages. The Journal of experimental medicine. 1998;188:2313-20.
    65. Walport MJ. Complement. First of two parts. The New England journal of medicine. 2001;344:1058-66.
    66. Walport MJ. Complement. Second of two parts. The New England journal of medicine. 2001;344:1140-4.
    67. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell research. 2010;20:34-50.
    68. Leffler J, Bengtsson AA, Blom AM. The complement system in systemic lupus erythematosus: an update. Annals of the rheumatic diseases. 2014;73:1601-6.
    69. Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends in immunology. 2010;31:154-63.
    70. Lu JH, Teh BK, Wang L, et al. The classical and regulatory functions of C1q in immunity and autoimmunity. Cellular & molecular immunology. 2008;5:9-21.
    71. Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Advances in immunology. 2000;76:227-324.
    72. Topaloglu R, Bakkaloglu A, Slingsby JH, et al. Molecular basis of hereditary C1q deficiency associated with SLE and IgA nephropathy in a Turkish family. Kidney international. 1996;50:635-42.
    73. Lee SL, Wallace SL, Barone R, Blum L, Chase PH. Familial deficiency of two subunits of the first component of complement. C1r and C1s associated with a lupus erythematosus-like disease. Arthritis and rheumatism. 1978;21:958-67.
    74. Jaatinen T, Lahti M, Ruuskanen O, et al. Total C4B deficiency due to gene deletion and gene conversion in a patient with severe infections. Clinical and diagnostic laboratory immunology. 2003;10:195-201.
    75. Fernando MM, Boteva L, Morris DL, et al. Assessment of complement C4 gene copy number using the paralog ratio test. Human mutation. 2010;31:866-74.
    76. Borzy MS, Gewurz A, Wolff L, Houghton D, Lovrien E. Inherited C3 deficiency with recurrent infections and glomerulonephritis. Am J Dis Child. 1988;142:79-83.
    77. Nilsson UR, Nilsson B, Storm KE, Sjolin-Forsberg G, Hallgren R. Hereditary dysfunction of the third component of complement associated with a systemic lupus erythematosus-like syndrome and meningococcal meningitis. Arthritis and rheumatism. 1992;35:580-6.
    78. Botto M, Fong KY, So AK, Koch C, Walport MJ. Molecular basis of polymorphisms of human complement component C3. The Journal of experimental medicine. 1990;172:1011-7.
    79. Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annual review of immunology. 2004;22:431-56.
    80. Sturfelt G, Truedsson L. Complement and its breakdown products in SLE. Rheumatology (Oxford). 2005;44:1227-32.
    81. Agnello V, De Bracco MM, Kunkel HG. Hereditary C2 deficiency with some manifestations of systemic lupus erythematosus. J Immunol. 1972;108:837-40.
    82. Dunham I, Sargent CA, Trowsdale J, Campbell RD. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis. Proceedings of the National Academy of Sciences of the United States of America. 1987;84:7237-41.
    83. Han JW, Zheng HF, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nature genetics. 2009;41:1234-7.
    84. Yang W, Shen N, Ye DQ, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS genetics. 2010;6:e1000841.
    85. Johnson CA, Densen P, Hurford RK, Jr., Colten HR, Wetsel RA. Type I human complement C2 deficiency. A 28-base pair gene deletion causes skipping of exon 6 during RNA splicing. The Journal of biological chemistry. 1992;267:9347-53.
    86. Wetsel RA, Kulics J, Lokki ML, et al. Type II human complement C2 deficiency. Allele-specific amino acid substitutions (Ser189 --> Phe; Gly444 --> Arg) cause impaired C2 secretion. The Journal of biological chemistry. 1996;271:5824-31.
    87. Walport MJ, Davies KA, Morley BJ, Botto M. Complement deficiency and autoimmunity. Annals of the New York Academy of Sciences. 1997;815:267-81.
    88. Truedsson L, Sturfelt G, Nived O. Prevalence of the type I complement C2 deficiency gene in Swedish systemic lupus erythematosus patients. Lupus. 1993;2:325-7.
    89. Sullivan KE, Petri MA, Schmeckpeper BJ, McLean RH, Winkelstein JA. Prevalence of a mutation causing C2 deficiency in systemic lupus erythematosus. The Journal of rheumatology. 1994;21:1128-33.
    90. Lian LH, Ching AS, Chong ZY, Chua KH. Complement components 2 and 7 (C2 and C7) gene polymorphisms are not major risk factors for SLE susceptibility in the Malaysian population. Rheumatology international. 2012;32:3665-8.
    91. Lu LY, Ding WZ, Fici D, et al. Molecular analysis of major histocompatibility complex allelic associations with systemic lupus erythematosus in Taiwan. Arthritis and rheumatism. 1997;40:1138-45.
    92. Devaraju P, Reni BN, Gulati R, Mehra S, Negi VS. Complement C1q and C2 polymorphisms are not risk factors for SLE in Indian Tamils. Immunobiology. 2014;219:465-8.
    93. Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33:366-9.
    94. Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:2014-8.
    95. Tsai LJ, Lan JL, Lin CY, Hsiao SH, Tsai LM, Tsai JJ. The different expression patterns of interleukin-1 receptor antagonist in systemic lupus erythematosus. Tissue antigens. 2006;68:493-501.
    96. Lipsker DM, Schreckenberg-Gilliot C, Uring-Lambert B, et al. Lupus erythematosus associated with genetically determined deficiency of the second component of the complement. Archives of dermatology. 2000;136:1508-14.
    97. Furukawa F, Kashihara-Sawami M, Lyons MB, Norris DA. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. The Journal of investigative dermatology. 1990;94:77-85.
    98. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. The Journal of experimental medicine. 1994;179:1317-30.
    99. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et biophysica acta. 2014;1837:408-17.
    100. Lewis RN, McElhaney RN. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochimica et biophysica acta. 2009;1788:2069-79.
    101. Haines TH, Dencher NA. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS letters. 2002;528:35-9.
    102. Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature cell biology. 2013;15:1197-205.
    103. Ramos-Casals M, Campoamor MT, Chamorro A, et al. Hypocomplementemia in systemic lupus erythematosus and primary antiphospholipid syndrome: prevalence and clinical significance in 667 patients. Lupus. 2004;13:777-83.
    104. Khamashta MA, Cuadrado MJ, Mujic F, Taub NA, Hunt BJ, Hughes GR. The management of thrombosis in the antiphospholipid-antibody syndrome. The New England journal of medicine. 1995;332:993-7.
    105. Hughes GR. Thrombosis, abortion, cerebral disease, and the lupus anticoagulant. Br Med J (Clin Res Ed). 1983;287:1088-9.
    106. Sanna G, Bertolaccini ML, Cuadrado MJ, et al. Neuropsychiatric manifestations in systemic lupus erythematosus: prevalence and association with antiphospholipid antibodies. The Journal of rheumatology. 2003;30:985-92.
    107. Jonsson G, Sjoholm AG, Truedsson L, Bengtsson AA, Braconier JH, Sturfelt G. Rheumatological manifestations, organ damage and autoimmunity in hereditary C2 deficiency. Rheumatology (Oxford). 2007;46:1133-9.
    108. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263-5.
    109. Tsai LJ, Hsiao SH, Tsai LM, et al. The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE. Tissue antigens. 2008;71:114-26.
    110. Zavattari P, Deidda E, Whalen M, et al. Major factors influencing linkage disequilibrium by analysis of different chromosome regions in distinct populations: demography, chromosome recombination frequency and selection. Human molecular genetics. 2000;9:2947-57.
    111. Pan CF, Wu CJ, Chen HH, et al. Molecular analysis of HLA-DRB1 allelic associations with systemic lupus erythematous and lupus nephritis in Taiwan. Lupus. 2009;18:698-704.
    112. Huang JL, Shaw CK, Lee A, Lee TD, Chou YH, Kuo ML. HLA-DRB1 antigens in Taiwanese patients with juvenile-onset systemic lupus erythematosus. Rheumatology international. 2001;21:103-5.
    113. Fingerman IM, McDaniel L, Zhang X, et al. NCBI Epigenomics: a new public resource for exploring epigenomic data sets. Nucleic acids research. 2011;39:D908-12.
    114. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes & development. 2011;25:1010-22.
    115. Schug J. Using TESS to predict transcription factor binding sites in DNA sequence. Current Protocols in Bioinformatics. 2008;Chapter 2:Unit 2.6. doi: 10.1002/0471250953.bi0206s21.
    116. Chang WC, Hung JJ. Functional role of post-translational modifications of Sp1 in tumorigenesis. Journal of biomedical science. 2012;19:94.
    117. Chen G, Gharib TG, Huang CC, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & cellular proteomics : MCP. 2002;1:304-13.
    118. Tian Q, Stepaniants SB, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Molecular & cellular proteomics : MCP. 2004;3:960-9.
    119. Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature. 2002;416:499-506.
    120. Ueda A, Kusaba T, Yanase T. Determination of the second component of complement (C2) by electroimmunoassay in sera from patients with systemic lupus erythematosus. Clinical and experimental immunology. 1983;53:217-24.
    121. Han S, Guthridge JM, Harley IT, et al. Osteopontin and systemic lupus erythematosus association: a probable gene-gender interaction. PloS one. 2008;3:e0001757.
    122. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Frontiers in neuroendocrinology. 2014;35:347-69.
    123. Safe S. Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitamins and hormones. 2001;62:231-52.
    124. Bauman JA, Kole R. Modulation of RNA splicing as a potential treatment for cancer. Bioengineered bugs. 2011;2:125-8.
    125. Alarcon-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Springer seminars in immunopathology. 2006;28:109-17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE