研究生: |
林函融 Lin, Han-Jung |
---|---|
論文名稱: |
共載超微米氧化鐵奈米粒子與阿黴素之微氣泡於大鼠腦瘤之化療與磁性導向標靶治療的可行性研究 Feasibility study of ultrasmall superparamagnetic iron oxide nanoparticle and doxorubicin encapsulated microbubbles for chemotherapy and magnetic targeting delivery in a xenograft rat glioma model |
指導教授: | 葉秩光 |
口試委員: |
葉秩光
劉浩澧 陳志成 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 神經膠質母細胞瘤 、血腦屏障 、微氣泡 、聚焦式超音波 、化學治療 、超順磁性氧化鐵奈米粒子 、標靶治療 |
外文關鍵詞: | glioblastoma multiforme (GBM), blood-brain barrier (BBB), microbubbles, focused ultrasound, chemotherapy, superparamagnetic iron oxide nanoparticle (SPIO), targeting therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經膠質母細胞瘤是最常見的原發性惡性腦瘤,即使經過適當治療仍無法有效增加病人的平均壽命。除了受限於腦組織中特殊的保護結構—血腦屏障阻礙化療藥物遞送至腦腫瘤區域的劑量之外,化療藥物本身對於身體其他部位的正常組織所造成的毒性也限制了臨床上投藥的劑量。近年來,許多研究致力於提升血腦屏障的通透性,其中,聚焦式超音波配合微氣泡的方法被證實能有效地非侵入性的增加血腦屏障的通透大幅提升藥物累積於腦組織中的劑量。另一方面,改良藥物載體的設計或是將藥物載體修飾上特定分子亦可以增加藥物於目標處的累積量。
本研究的目的是發展共載超微米氧化鐵奈米粒子(ultrasmall superparamagnetic iron oxide nanoparticle, USPIO)與阿黴素(doxorubicin, DOX)的磷脂質微氣泡(簡稱UD-MB),並評估UD-MB作為神經膠質母細胞瘤多功能治療用藥的可行性。此外,本研究將利用USPIO的趨磁性吸引UD-MB以增加藥物於腫瘤組織中的累積量,更藉著USPIO本身具有超順磁的特性來產生MRI影像對比作為治療中的影像導引以及治療後的預後評估。
本研究藉由電性吸附的方式將阿黴素修飾於微氣泡殼層上,超微米氧化鐵奈米粒子則以疏水作用力與磷脂質殼層相接來製備UD-MB。接著為了評估UD-MB作為超音波或MRI對比劑的能力將進行聲學以及磁學的特性量測。治療成效的評估則以C-6腫瘤細胞劑型細胞毒性測試。最後將以中心頻率為0.4 MHz的聚焦式超音波在特定參數下(328 kPa、1000 cycles、PRF 1Hz、照射90 sec)配合UD-MB來治療經植入C-6腫瘤細胞株的Sprague–Dawley大鼠進行血腦屏障開啟的評估。
實驗結果顯示UD-MB可以承載675± 62 mg/mL DOX以及707± 57 mg/mL USPIO。仿體實驗發現UD-MB能造成超音波對比影像增強約37 dB,MRI影像上每單位莫爾體積分率的UD-MB即可增加14.1 sec-1的橫向遲緩率。由細胞實驗則可確定在尚未以超音波進行釋藥前,UD-MB的細胞毒性與自由狀態下的DOX具有顯著性的差異(p value < 0.05)。並以強力磁鐵置於細胞培養品下方來吸引UD-MB的實驗可觀察到細胞攝取DOX以及USPIO的能力增加。最後,動物實驗的結果顯示UD-MB確實可以用來增加血腦屏障的通透。總結以上實驗結果可以證實自製UD-MB具有針對神經膠質母細胞瘤作為磁力導向的標靶治療藥物的能力。
未來工作希望進一步將腫瘤標的物質修飾上UD-MB,希望藉著標的物質來達到降低藥物於非目標區域的累積量,同時以磁力導向的標靶技術來增強效果。
關鍵字:神經膠質母細胞瘤、血腦屏障、微氣泡、聚焦式超音波、化學治療、超順磁性氧化鐵奈米粒子、標靶治療
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Most GBM patients have poor prognosis even after proper treatment. The major obstacles include less drugs reaching targeted area due to the existence of blood-brain barrier (BBB) and appearance of severe side effects preventing further increase in prescription dosage. Recently many techniques have been proposed to resolve these problems. Among these techniques, focus ultrasound combined with microbubbles provided the potential for elevating amount of drugs delivered into brain tissue. In order to reduce the exposure of normal tissue to drugs, designing a drug carrier or chelating a targeting molecule to drugs is needed.
The aim of this study is to develop the multi-functional phospholipid microbubbles (UD-MB) which loaded with doxorubicin (DOX) and ultrasmall superparamagnetic iron oxide nanoparticle (USPIO). As a drug carrier, UD-MB can reduce DOX toxicity to normal tissue and increase the accumulation of drugs in brain when combined with focus ultrasound insonation. Moreover, loading with USPIO on microbubbles, UD-MB can be transported to the targeting site by magnet and used as MRI contrast agents.
The DOX molecules with positive charge were electrostatically complex to anion phospholipid molecules and surface modified USPIO were trapped onto the inner shell by hydrophobic linkage between phospholipid molecules and USPIO. We also conducted the in-vitro experiments to quantify and qualify the sono-properties and magnetic properties of UD-MB. The cells toxicity of UD-MB was evaluated by using C-6 glioma cells. The degree of BBB opening by UD-MB with focused ultrasound (328 kPa, 1000 cycles, PRF 1 Hz, sonicate for 90 sec) in Sprague–Dawley rats bearing GBM tumors were also evaluated.
The results show the payloads of 675± 62 mg/mL DOX and 707± 57 mg/mL USPIO on the fabricated UD-MB. The ultrasound images can be enhanced by 37 dB and MRI relaxivity was 107.3 s-1mM-1 by using UD-MB. Moreover, intact UD-MB can reduce cells toxicity significantly compared to ionizing DOX. A magnet loacated on the beneath cell culture dish would enhance uptakes of DOX and USPIO by cells. In-vivo experiments demonstrate that UD-MB have the potential to increase the permeability of BBB.
In conclusion, UD-MB can be used as a dual imaging modality contrast agents and a magnetic targeting therapeutic drug for treating GBM. Future works include chelating a targeting molecule on UD-MB and applying the magnet to enhance the accumulation.
Keywords: glioblastoma multiforme (GBM), blood-brain barrier (BBB), microbubbles , focused ultrasound, chemotherapy, superparamagnetic iron oxide nanoparticle (SPIO), targeting therapy
[1] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, "Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008," International journal of cancer, vol. 127, pp. 2893-917, Dec 15 2010.
[2] "Cancer Registry Annual Report, 2008, Taiwan," ed: Bureau of Health Promotion Department of Health the Executive Yuan Taiwan, 2010, pp. 108-109.
[3] S. S. Brem, P. J. Bierman, H. Brem, N. Butowski, M. C. Chamberlain, E. A. Chiocca, L. M. DeAngelis, R. A. Fenstermaker, A. Friedman, M. R. Gilbert, D. Hesser, L. Junck, G. P. Linette, J. S. Loeffler, M. H. Maor, M. Michael, P. L. Moots, T. Morrison, M. Mrugala, L. B. Nabors, H. B. Newton, J. Portnow, J. J. Raizer, L. Recht, D. C. Shrieve, A. K. Sills, F. D. Vrionis, and P. Y. Wen, "Central Nervous System Cancers," Journal of the National Comprehensive Cancer Network, vol. 9, pp. 352-400, Apr 2011.
[4] E. A. Maher, J. Mietz, C. L. Arteaga, R. A. DePinho, and S. Mohla, "Brain metastasis: opportunities in basic and translational research," Cancer research, vol. 69, pp. 6015-20, Aug 1 2009.
[5] A. F. Eichler and J. S. Loeffler, "Multidisciplinary management of brain metastases," The oncologist, vol. 12, pp. 884-98, Jul 2007.
[6] C. P. Haar, P. Hebbar, G. C. t. Wallace, A. Das, W. A. Vandergrift, 3rd, J. A. Smith, P. Giglio, S. J. Patel, S. K. Ray, and N. L. Banik, "Drug Resistance in Glioblastoma: A Mini Review," Neurochemical research, Jan 10 2012.
[7] "cancer registryannual report, 2008 Taiwan," D. o. H. Bureau of Health Promotion, R.O.C.(Taiwan), Ed., ed, 2010.
[8] (2011, September 1, 2011). CBTRUS Statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004-2007.
[9] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer, and P. Kleihues, "The 2007 WHO classification of tumours of the central nervous system," Acta Neuropathologica, vol. 114, pp. 97-109, Aug 2007.
[10] L. Arko, I. Katsyv, G. E. Park, W. P. Luan, and J. K. Park, "Experimental approaches for the treatment of malignant gliomas," Pharmacology & therapeutics, vol. 128, pp. 1-36, Oct 2010.
[11] R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer, and R. O. Mirimanoff, "Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma," The New England journal of medicine, vol. 352, pp. 987-96, Mar 10 2005.
[12] F. E. Bleeker, R. J. Molenaar, and S. Leenstra, "Recent advances in the molecular understanding of glioblastoma," Journal of neuro-oncology, Jan 20 2012.
[13] M. Preusser, S. de Ribaupierre, A. Wohrer, S. C. Erridge, M. Hegi, M. Weller, and R. Stupp, "Current Concepts and Management of Glioblastoma," Annals of Neurology, vol. 70, pp. 9-21, Jul 2011.
[14] R. Stupp, M. E. Hegi, W. P. Mason, M. J. van den Bent, M. J. Taphoorn, R. C. Janzer, S. K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A. A. Brandes, J. Gijtenbeek, C. Marosi, C. J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J. G. Cairncross, and R. O. Mirimanoff, "Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial," The lancet oncology, vol. 10, pp. 459-66, May 2009.
[15] E. C. Burton, K. R. Lamborn, B. G. Feuerstein, M. Prados, J. Scott, P. Forsyth, S. Passe, R. B. Jenkins, and K. D. Aldape, "Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma," Cancer research, vol. 62, pp. 6205-10, Nov 1 2002.
[16] D. Krex, B. Klink, C. Hartmann, A. von Deimling, T. Pietsch, M. Simon, M. Sabel, J. P. Steinbach, O. Heese, G. Reifenberger, M. Weller, and G. Schackert, "Long-term survival with glioblastoma multiforme," Brain, vol. 130, pp. 2596-606, Oct 2007.
[17] 腦瘤之診斷與治療共識 National Health Research Institutes (NHRI): Taiwan Cooperative Oncology Group (TCOG), 2004.
[18] J. C. Buckner, P. D. Brown, B. P. O'Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, "Central nervous system tumors," Mayo Clinic proceedings, vol. 82, pp. 1271-86, Oct 2007.
[19] T. Crisafulli, "What's on the agenda for 2011?," Seminars in oncology, vol. 38, pp. 163-4, Apr 2011.
[20] T. N. Kreisl, "Chemotherapy for malignant gliomas," Seminars in radiation oncology, vol. 19, pp. 150-4, Jul 2009.
[21] W. Vogelhuber, T. Spruss, G. Bernhardt, A. Buschauer, and A. Gopferich, "Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts," International Journal of Pharmaceutics, vol. 238, pp. 111-121, May 2002.
[22] H. Athanassiou, M. Synodinou, E. Maragoudakis, M. Paraskevaidis, C. Verigos, D. Misailidou, D. Antonadou, G. Saris, K. Beroukas, and P. Karageorgis, "Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme," Journal of clinical oncology, vol. 23, pp. 2372-7, Apr 1 2005.
[23] M. E. Hegi, A. C. Diserens, T. Gorlia, M. F. Hamou, N. de Tribolet, M. Weller, J. M. Kros, J. A. Hainfellner, W. Mason, L. Mariani, J. E. Bromberg, P. Hau, R. O. Mirimanoff, J. G. Cairncross, R. C. Janzer, and R. Stupp, "MGMT gene silencing and benefit from temozolomide in glioblastoma," The New England journal of medicine, vol. 352, pp. 997-1003, Mar 10 2005.
[24] A. B. Etame, R. J. Diaz, C. A. Smith, T. G. Mainprize, K. Hynynen, and J. T. Rutka, "Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology," Neurosurgical focus, vol. 32, p. E3, Jan 2012.
[25] N. J. Abbott, "Astrocyte-endothelial interactions and blood-brain barrier permeability," J Anat, vol. 200, pp. 629-38, Jun 2002.
[26] N. J. Abbott, L. Ronnback, and E. Hansson, "Astrocyte-endothelial interactions at the blood-brain barrier," Nature reviews. Neuroscience, vol. 7, pp. 41-53, Jan 2006.
[27] L. L. Muldoon, C. Soussain, K. Jahnke, C. Johanson, T. Siegal, Q. R. Smith, W. A. Hall, K. Hynynen, P. D. Senter, D. M. Peereboom, and E. A. Neuwelt, "Chemotherapy delivery issues in central nervous system malignancy: a reality check," Journal of clinical oncology, vol. 25, pp. 2295-305, Jun 1 2007.
[28] L. Juillerat-Jeanneret, "The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles?," Drug discovery today, vol. 13, pp. 1099-106, Dec 2008.
[29] N. J. Abbott and P. A. Revest, "Control of brain endothelial permeability," Cerebrovascular and brain metabolism reviews, vol. 3, pp. 39-72, Spring 1991.
[30] H. J. Lee, Y. Zhang, and W. M. Pardridge, "Blood-brain barrier disruption following the internal carotid arterial perfusion of alkyl glycerols," Journal of drug targeting, vol. 10, pp. 463-7, Sep 2002.
[31] D. F. Emerich, R. L. Dean, C. Osborn, and R. T. Bartus, "The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier - From concept to clinical evaluation," Clinical Pharmacokinetics, vol. 40, pp. 105-123, 2001.
[32] E. Sanovich, R. T. Bartus, P. M. Friden, R. L. Dean, H. Q. Le, and M. W. Brightman, "Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7," Brain research, vol. 705, pp. 125-135, Dec 24 1995.
[33] H. H. Engelhard, "The role of interstitial BCNU chemotherapy in the treatment of malignant glioma," Surgical Neurology, vol. 53, pp. 458-464, May 2000.
[34] W. M. Pardridge, "The blood-brain barrier: bottleneck in brain drug development," NeuroRx, vol. 2, pp. 3-14, Jan 2005.
[35] M. S. Khil, A. Kolozsvary, M. Apple, and J. H. Kim, "Increased tumor cures using combined radiosurgery and BCNU in the treatment of 9L glioma in the rat brain," International Journal of Radiation Oncology Biology Physics, vol. 47, pp. 511-516, May 1 2000.
[36] M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, "Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 11719-23, Aug 1 2006.
[37] N. Vykhodtseva, N. McDannold, and K. Hynynen, "Progress and problems in the application of focused ultrasound for blood-brain barrier disruption," Ultrasonics, vol. 48, pp. 279-96, Aug 2008.
[38] K. G. Baker, V. J. Robertson, and F. A. Duck, "A review of therapeutic ultrasound: biophysical effects," Physical therapy, vol. 81, pp. 1351-8, Jul 2001.
[39] I. Lentacker, S. C. De Smedt, and N. N. Sanders, "Drug loaded microbubble design for ultrasound triggered delivery," Soft Matter, vol. 5, pp. 2161-2170, 2009.
[40] V. Sboros, "Response of contrast agents to ultrasound," Advanced drug delivery reviews, vol. 60, pp. 1117-36, Jun 30 2008.
[41] D. Dalecki, "Mechanical bioeffects of ultrasound," Annual Review of Biomedical Engineering, vol. 6, pp. 229-248, 2004.
[42] S. Mehier-Humbert, T. Bettinger, F. Yan, and R. H. Guy, "Plasma membrane poration induced by ultrasound exposure: implication for drug delivery," Journal of controlled release, vol. 104, pp. 213-22, May 5 2005.
[43] P. Prentice, A. Cuschierp, K. Dholakia, M. Prausnitz, and P. Campbell, "Membrane disruption by optically controlled microbubble cavitation," Nature Physics, vol. 1, pp. 107-110, Nov 2005.
[44] A. van Wamel, K. Kooiman, M. Harteveld, M. Emmer, F. J. ten Cate, M. Versluis, and N. de Jong, "Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation," Journal of controlled release, vol. 112, pp. 149-155, May 15 2006.
[45] C. Y. Ting, C. H. Fan, H. L. Liu, C. Y. Huang, H. Y. Hsieh, T. C. Yen, K. C. Wei, and C. K. Yeh, "Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment," Biomaterials, vol. 33, pp. 704-712, Jan 2012.
[46] R. Gramiak and P. M. Shah, "Echocardiography of the aortic root," Investigative Radiology, vol. 3, pp. 356-66, Sep-Oct 1968.
[47] A. Kabalnov, J. Bradley, S. Flaim, D. Klein, T. Pelura, B. Peters, S. Otto, J. Reynolds, E. Schutt, and J. Weers, "Dissolution of multicomponent microbubbles in the bloodstream: 2. Experiment," Ultrasound in Medicine and Biology, vol. 24, pp. 751-760, Jun 1998.
[48] A. Kabalnov, D. Klein, T. Pelura, E. Schutt, and J. Weers, "Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory," Ultrasound in Medicine and Biology, vol. 24, pp. 739-749, Jun 1998.
[49] E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, "Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals," Angewandte Chemie, vol. 42, pp. 3218-35, Jul 21 2003.
[50] K. Sarkar, A. Katiyar, and P. Jain, "Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability," Ultrasound in Medicine and Biology, vol. 35, pp. 1385-96, Aug 2009.
[51] O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, "Acoustic droplet vaporization for therapeutic and diagnostic applications," Ultrasound in Medicine and Biology, vol. 26, pp. 1177-89, Sep 2000.
[52] S. Tinkov, R. Bekeredjian, G. Winter, and C. Coester, "Microbubbles as Ultrasound Triggered Drug Carriers," Journal of Pharmaceutical Sciences, vol. 98, pp. 1935-1961, Jun 2009.
[53] J. L. Cohen, J. Cheirif, D. S. Segar, L. D. Gillam, J. S. Gottdiener, E. Hausnerova, and D. E. Bruns, "Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent. Results of a phase III Multicenter Trial," Journal of the American College of Cardiology, vol. 32, pp. 746-52, Sep 1998.
[54] E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi, "Therapeutic applications of lipid-coated microbubbles," Advanced drug delivery reviews, vol. 56, pp. 1291-1314, May 7 2004.
[55] N. de Jong, A. Bouakaz, and P. Frinking, "Basic acoustic properties of microbubbles," Echocardiography, vol. 19, pp. 229-40, Apr 2002.
[56] N. de Jong, M. Emmer, A. van Wamel, and M. Versluis, "Ultrasonic characterization of ultrasound contrast agents," Medical & Biological Engineering & Computing, vol. 47, pp. 861-873, Aug 2009.
[57] S. P. Qin, C. F. Caskey, and K. W. Ferrara, "Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering," Physics in Medicine and Biology, vol. 54, pp. R27-R57, Mar 2009.
[58] F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, "Ultrasound contrast agents - Basic principles," European Journal of Radiology, vol. 27, pp. S157-S160, May 1998.
[59] Z. Liu, F. Kiessling, and J. Gatjens, "Advanced Nanomaterials in Multimodal Imaging: Design, Functionalization, and Biomedical Applications," Journal of Nanomaterials, vol. 2010, pp. 1-15, 2010.
[60] L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, "Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound," International Journal of Cancer, vol. 121, pp. 901-907, Aug 15 2007.
[61] F. Wang, Y. Cheng, J. Mei, Y. Song, Y. Q. Yang, Y. J. Liu, and Z. B. Wang, "Focused Ultrasound Microbubble Destruction-Mediated Changes in Blood-Brain Barrier Permeability Assessed by Contrast-Enhanced Magnetic Resonance Imaging," Journal of Ultrasound in Medicine, vol. 28, pp. 1501-1509, Nov 2009.
[62] F. Xie, M. D. Boska, J. Lof, M. G. Uberti, J. M. Tsutsui, and T. R. Porter, "Effects of Transcranial Ultrasound and Intravenous Microbubbles on Blood Brain Barrier Permeability in a Large Animal Model," Ultrasound in Medicine and Biology, vol. 34, pp. 2028-2034, Dec 2008.
[63] N. Vykhodtseva, N. McDannold, and K. Hynynen, "Progress and problems in the application of focused ultrasound for blood-brain barrier disruption," Ultrasonics, vol. 48, pp. 279-296, Aug 2008.
[64] D. M. Hoffman, D. D. Grossano, L. Damin, and T. M. Woodcock, "Stability of refrigerated and frozen solutions of doxorubicin hydrochloride," American journal of hospital pharmacy, vol. 36, pp. 1536-8, Nov 1979.
[65] R. R. Patil, S. A. Guhagarkar, and P. V. Devarajan, "Engineered nanocarriers of doxorubicin: a current update," Critical reviews in therapeutic drug carrier systems, vol. 25, pp. 1-61, 2008.
[66] G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, "Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity," Pharmacological reviews, vol. 56, pp. 185-229, Jun 2004.
[67] S. Verma, S. Dent, B. J. W. Chow, D. Rayson, and T. Safra, "Metastatic breast cancer: The role of pegylated liposomal doxorubicin after conventional anthracyclines," Cancer Treatment Reviews, vol. 34, pp. 391-406, Aug 2008.
[68] S. Tinkov, G. Winter, C. Coester, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization," Journal of controlled release, vol. 143, pp. 143-50, Apr 2 2010.
[69] X. Cai, F. Yang, and N. Gu, "Applications of magnetic microbubbles for theranostics," Theranostics, vol. 2, pp. 103-12, 2012.
[70] J. I. Park, D. Jagadeesan, R. Williams, W. Oakden, S. Chung, G. J. Stanisz, and E. Kumacheva, "Microbubbles loaded with nanoparticles," ACS Nano, vol. 4, pp. 6579-86, Nov 23 2010.
[71] P. Kogan, R. C. Gessner, and P. A. Dayton, "Microbubbles in Imaging: Applications Beyond Ultrasound," Bubble science engineering and technology, vol. 2, pp. 3-8, Jun 2010.
[72] H. B. Na, I. C. Song, and T. Hyeon, "Inorganic Nanoparticles for MRI Contrast Agents," Advanced Materials, vol. 21, pp. 2133-2148, Jun 5 2009.
[73] M. H. M. Dias and P. C. Lauterbur, "Ferromagnetic Particles as Contrast Agents for Magnetic-Resonance-Imaging of Liver and Spleen," Magnetic Resonance in Medicine, vol. 3, pp. 328-330, Apr 1986.
[74] K. K. Wong, I. Huang, Y. R. Kim, H. Y. Tang, E. S. Yang, K. K. Kwong, and E. X. Wu, "In vivo study of microbubbles as an MR susceptibility contrast agent," Magnetic Resonance in Medicine, vol. 52, pp. 445-452, Sep 2004.
[75] A. M. Chow, K. W. Chan, J. S. Cheung, and E. X. Wu, "Enhancement of gas-filled microbubble R2* by iron oxide nanoparticles for MRI," Magnetic resonance in medicine, vol. 63, pp. 224-9, Jan 2010.
[76] A. L. Alexander, T. T. McCreery, T. R. Barrette, A. F. Gmitro, and E. C. Unger, "Microbubbles as novel pressure-sensitive MR contrast agents," Magnetic Resonance in Medicine, vol. 35, pp. 801-806, Jun 1996.
[77] R. Dharmakumar, D. B. Plewes, and G. A. Wright, "On the parameters affecting the sensitivity of MR measures of pressure with microbubbles," Magnetic Resonance in Medicine, vol. 47, pp. 264-273, Feb 2002.
[78] T. Y. Ueguchi T, Hamada S, Kawamoto R, Ogata Y, Matsumoto M, et al. ;:, " Air Microbubbles as MR Susceptibility Contrast Agent at 1.5 Tesla," Magn Reson Med Sci, vol. 006, pp. 147–150.
[79] F. Yang, L. Li, Y. Li, Z. Chen, J. Wu, and N. Gu, "Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents," Physics in Medicine and Biology, vol. 53, pp. 6129-41, Nov 7 2008.
[80] F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, and N. Gu, "Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging," Biomaterials, vol. 30, pp. 3882-90, Aug 2009.
[81] T. Y. Liu and T. C. Huang, "A novel drug vehicle capable of ultrasound-triggered release with MRI functions," Acta biomaterialia, vol. 7, pp. 3927-34, Nov 2011.
[82] F. Yang, M. Zhang, W. He, P. Chen, X. Cai, L. Yang, N. Gu, and J. Wu, "Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects," Small, vol. 7, pp. 902-10, Apr 4 2011.
[83] Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, and J. Gatjens, "Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging," Biomaterials, vol. 32, pp. 6155-63, Sep 2011.
[84] K. Soetanto and H. Watarai, "Development of magnetic microbubbles for drug delivery system (DDS)," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 3230-3232, May 2000.
[85] E. Mace, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, "Functional ultrasound imaging of the brain," Nature Methods, vol. 8, pp. 662-U85, Aug 2011.
[86] H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, "Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain," Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 15205-15210, Aug 24 2010.
[87] A. Serotec. (2011). alamarBlue® Technical Datasheet.
[88] W. He, F. Yang, Y. H. Wu, S. Wen, P. Chen, Y. Zhang, and N. Gu, "Microbubbles with surface coated by superparamagnetic iron oxide nanoparticles," Materials Letters, vol. 68, pp. 64-67, Feb 1 2012.
[89] C. X. Jiang, X. Li, F. Yan, Z. H. Wang, Q. F. Jin, F. Y. Cai, M. Qian, X. Liu, L. J. Zhang, and H. R. Zheng, "Microfluidic-assisted formation of multifunctional monodisperse microbubbles for diagnostics and therapeutics," Micro & Nano Letters, vol. 6, pp. 417-421, Jun 2011.
[90] R. M. Epand and S. W. Hui, "Effect of Electrostatic Repulsion on the Morphology and Thermotropic Transitions of Anionic Phospholipids," FEBS Letters, vol. 209, pp. 257-260, Dec 15 1986.
[91] I. Lentacker, B. Geers, J. Demeester, S. C. De Smedt, and N. N. Sanders, "Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved," Molecular Therapy, vol. 18, pp. 101-108, Jan 2010.
[92] A. L. Klibanov, K. W. Ferrara, M. S. Hughes, J. H. Wible, Jr., J. K. Wojdyla, P. A. Dayton, K. E. Morgan, and G. H. Brandenburger, "Direct video-microscopic observation of the dynamic effects of medical ultrasound on ultrasound contrast microspheres," Investigative radiology, vol. 33, pp. 863-70, Dec 1998.
[93] M. Ward, J. Wu, and J. F. Chiu, "Experimental study of the effects of Optison concentration on sonoporation in vitro," Ultrasound in Medicine and Biology, vol. 26, pp. 1169-75, Sep 2000.
[94] E. Barbarese, S. Y. Ho, J. S. D'Arrigo, and R. H. Simon, "Internalization of microbubbles by tumor cells in vivo and in vitro," Journal of neuro-oncology, vol. 26, pp. 25-34, Oct 1995.
[95] A. M. Smith, B. K. Lewis, U. E. Ruttimann, F. Q. Ye, T. M. Sinnwell, Y. H. Yang, J. H. Duyn, and J. A. Frank, "Investigation of low frequency drift in fMRI signal," Neuroimage, vol. 9, pp. 526-533, May 1999.
[96] I. Nolte, G. H. Vince, M. Maurer, C. Herbold, R. Goldbrunner, L. Solymosi, G. Stoll, and M. Bendszus, "Iron particles enhance visualization of experimental gliomas with high-resolution sonography," American Journal of Neuroradiology, vol. 26, pp. 1469-1474, Jun-Jul 2005.
[97] E. E. Cho, J. Drazic, M. Ganguly, B. Stefanovic, and K. Hynynen, "Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening," Journal of cerebral blood flow and metabolism, vol. 31, pp. 1852-62, Sep 2011.
[98] J. P. Bin, J. F. Wu, L. Yang, Y. B. Xiao, J. J. Xie, Y. Liu, J. G. Bin, Y. Yan, and J. H. Li, "In vivo Assessment of Novel Magnetic Microbubbles Targeted to P-selectin for Inflammatory Molecular Imaging in High-shear Flow," Circulation, vol. 120, pp. S327-S327, Nov 3 2009.
[99] J. F. Wu, H. Leong-Poi, J. P. Bin, L. Yang, Y. L. Liao, Y. Liu, J. J. Cai, J. J. Xie, and Y. L. Liu, "Efficacy of Contrast-enhanced US and Magnetic Microbubbles Targeted to Vascular Cell Adhesion Molecule-1 for Molecular Imaging of Atherosclerosis," Radiology, vol. 260, pp. 463-471, Aug 2011.
[100] M. Nahrendorf and D. E. Sosnovik, "Science to practice: will magnetic guidance of microbubbles play a role in clinical molecular imaging?," Radiology, vol. 260, pp. 309-10, Aug 2011.