研究生: |
蘇義鈞 Su, Yi-Chun |
---|---|
論文名稱: |
兩相磷酸鈣奈米顆粒對於成骨細胞骨化與抑制發炎反應之研究 Nanoscaled biphasic calcium phosphate modulates osteogenesis of osteoblasts and attenuates inflammation |
指導教授: |
林立元
Lin, Lih-Yuan 徐子勝 Hsu, Tzu-Sheng |
口試委員: |
周裕珽
Chou, Yu-Ting 李東芳 Lee, Dung-Fang 李易展 Lee, Yi-Jang 陳建鋒 Chen, Chian-Feng |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 奈米材料 、巨噬細胞 、成骨細胞 、發炎反應 、免疫調控 、抗發炎 、兩相材料 、氫氧機磷灰石 、三鈣磷酸鹽 |
外文關鍵詞: | nanomaterials, macrophages, osteoblasts, inflammatory response, immunomodulation, anti-inflammation, biphasic materials, hydroxyapatite, tricalcium phosphate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微米級之兩相磷酸鈣材料在臨床上已被證實在骨組織修復中具有效果,但目前對於奈米等級之兩相磷酸鈣材料之研究則仍非常少,尤其是兩相奈米材料對於成骨細胞分化、免疫調控與發炎狀態下之微環境的影響。本研究運用奈米研磨分散技術,通過使用聚合羧酸作為分散劑成功製備出非針狀之奈米顆粒,此材料具備無細胞毒性、表面帶負電與能夠進入細胞之特性。我們的結果顯示,使用較低濃度的兩相奈米顆粒處理人類成骨細胞,可顯著增加鹼性磷酸酶(ALP)活性,並增強與成骨相關的基因表達,其中包括ALP、RUNX2與OPN。此外,兩相奈米顆粒還表現出免疫調節效果,在無發炎誘導的條件下,以兩相奈米顆粒處理單核球細胞來源之巨噬細胞,可以降低發炎性細胞因子的基因表現量,其中包括IL-1beta、TNF-alpha和IL-6。在LPS誘導發炎的情況下,兩相奈米顆粒可以有效的抑制LPS所誘發之發炎性細胞因子的基因與蛋白質表現量。本研究進一步以條件培養液的實驗發現,兩相奈米顆粒能夠降低由LPS刺激的巨噬細胞培養液對成骨細胞分化和礦化的負面影響。這些發現說明了兩相奈米顆粒在骨組織修復和再生的臨床應用中具有潛力。總體而言,本研究開發出之兩相奈米顆粒能促進成骨細胞骨化並俱備免疫調節特性,為解決臨床手術中的發炎性骨溶解併發症提供了潛在的治療途徑。
Micron-scale biphasic calcium phosphate materials have been effective in bone tissue repair, but there is limited research on their nanoscale counterparts. This study focuses on synthesizing granular-shaped biphasic calcium phosphate nanomaterials with beneficial properties such as negatively charged surfaces, non-cytotoxicity, and cellular penetration. These characteristics were achieved using a nanogrinding dispersion method with polymeric carboxylic acid as the dispersant. Our results demonstrate that treating human osteoblasts with lower concentration of these nanoparticles significantly increases alkaline phosphatase (ALP) activity and enhances the expression of genes related to osteogenesis. Furthermore, the biphasic calcium phosphate nanoparticles exhibit immunomodulatory effects. When applied to THP-1-derived macrophages, these nanomaterials reduce the expression of several inflammatory genes. They also inhibit the heightened inflammatory gene expression and inflammatory protein production induced by lipopolysaccharide (LPS) in THP-1-derived macrophages. Importantly, biphasic calcium phosphate nanoparticles can reverse the negative effects of LPS-stimulated macrophage-conditioned medium on osteoblast osteogenesis and mineralization. These findings suggest that biphasic calcium phosphate nanoparticles have the potential utility for clinical applications in bone tissue repair and regeneration. In summary, this study highlights the advantageous properties of biphasic calcium phosphate nanoparticles in promoting osteogenesis and modulating immune responses, offering a potential pathway for addressing inflammatory osteolysis in clinical surgery.
Amarasekara, D. S., Yun, H., Kim, S., Lee, N., Kim, H., and Rho, J. (2018). Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, e8. doi:10.4110/in. 2018.18.e8
Amirian, J., Linh, N. T., Min, Y. K., and Lee, B. T. (2015). Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int. J. Biol. Macromol. 76, 10–24.
doi:10.1016/j.ijbiomac.2015.02.021
Arend W. P. (2002). The mode of action of cytokine inhibitors. The Journal of rheumatology. Supplement, 65, 16–21.
Arinzeh, T. L., Tran, T., Mcalary, J., and Daculsi, G. (2005). A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26, 3631–3638. doi:10.1016/j.biomaterials.2004.09.035
Awasthi, S., Pandey, S., Arunan, E., and Srivastava, C. (2020). A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J. Mater. Chem. B 10, 228–249. doi:10.1039/d0tb02407d
Basu, S., and Basu, B. (2019). Unravelling doped biphasic calcium phosphate: synthesis to application. ACS Appl. Bio Mater 2, 5263–5297. doi:10.1021/acsabm. 9b00488
Bains, P. S., Singh, G., Bhui, A. S., Sidhu, S. S., & Bains, P. (2019). Biomaterials in Orthopaedics and Bone Regeneration.
Baldelli, A., Ou, J., Li, W., & Amirfazli, A. (2020). Spray-On Nanocomposite Coatings: Wettability and Conductivity. Langmuir : the ACS journal of surfaces and colloids, 36(39), 11393–11410. doi:10.1021/acs.langmuir.0c01020
Bi, Y., Seabold, J. M., Kaar, S. G., Ragab, A. A., Goldberg, V. M., Anderson, J. M., & Greenfield, E. M. (2001). Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 16(11), 2082–2091. doi:10.1359/jbmr.2001.16.11.2082
Bohner, M., & Lemaitre, J. (2009). Can bioactivity be tested in vitro with SBF solution?. Biomaterials, 30(12), 2175–2179. doi:10.1016/j.biomaterials.2009.01.008
Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. (1996). Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 45:371-86. PMID: 8727757.
Calderin, L., Stott, M. J., & Rubio, A. (2003). Electronic and crystallographic structure of apatites. Physical Review B, 67(13), 134106.
Callaway, D. A., and Jiang, J. X. (2015). Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Min. Metab. 33, 359–370. doi:10.1007/s00774-015-0656-4
Capulli, M., Paone, R., & Rucci, N. (2014). Osteoblast and osteocyte: games without frontiers. Archives of biochemistry and biophysics, 561, 3-12. doi: 10.1016/j.abb.2014.05.003.
Chen, J., & Long, F. (2018). mTOR signaling in skeletal development and disease. Bone research, 6, 1. https://doi.org/10.1038/s41413-017-0004-5
Chen, Y. J., Pao, J. L., Chen, C. S., Chen, Y. C., Chang, C. C., Hung, F. M., et al. (2017). Evaluation of new biphasic calcium phosphate bone substitute: rabbit femur defect model and preliminary clinical results. J. Med. Biol. Eng. 37, 85–93. doi:10.1007/s40846- 016-0203-3
Chen, Z., Bachhuka, A., Wei, F., Wang, X., Liu, G., Vasilev, K., Xiao, Y. (2017). Nanotopography-Based Strategy for the Precise
Manipulation of Osteoimmunomodulation in Bone Regeneration. Nanoscale , 9, 18129–18152. doi:10.1039/C7NR05913B
Chen, Z., Klein, T., Murray, R.Z., Crawford, R., Chang, J., Wu, C., Xiao, Y. (2016). Osteoimmunomodulation for the Development of
Advanced Bone Biomaterials. Mater. Today, 19, 304–321.
doi:10.1016/j.mattod.2015.11.004
Chen, Zetao & Han, Shengwei & Shi, Mengchao & Liu, Guanqi & Chen, Zhuofan & Chang, Jiang & Wu, Chengtie & Xiao, Yin. (2017). Immunomodulatory effects of mesoporous silica nanoparticles on osteogenesis: From nanoimmunotoxicity to nanoimmunotherapy. Applied Materials Today. doi:10.1016/j.apmt.2017.12.003
Chigurupati, S., Mughal, M. R., Okun, E., Das, S., Kumar, A., McCaffery, M., Seal, S., & Mattson, M. P. (2013). Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 34(9), 2194–2201. doi:10.1016/j.biomaterials.2012.11.0613
Čitaković, N. M. (2019). Physical properties of nanomaterials. Vojnotehnički glasnik/Military Technical Courier, 67(1), 159-171.
Claes, L., Recknagel, S., & Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. Nature reviews. Rheumatology, 8(3), 133–143. doi: 10.1038/nrrheum.2012.1
Crush, J., Hussain, A., Seah, K. T. M., & Khan, W. S. (2021). Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Frontiers in cell and developmental biology, 9, 643781. doi:10.3389/fcell.2021.643781
Darimont, G. L., Cloots, R., Heinen, E., Seidel, L., and Legrand, R. (2002). In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23, 2569–2575. doi:10.1016/s0142-9612(01)00392-1
Datta, H. K., Ng, W. F., Walker, J. A., Tuck, S. P., & Varanasi, S. S. (2008). The cell biology of bone metabolism. Journal of clinical pathology, 61(5), 577–587. doi:10.1136/jcp.2007.048868
Dai, Q., Xu, Z., Ma, X., Niu, N., Zhou, S., Xie, F., Jiang, L., Wang, J., & Zou, W. (2017). mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell death and differentiation, 24(11), 1886–1899. doi:10.1038/cdd.2017.110
Darimont, G. L., Cloots, R., Heinen, E., Seidel, L., & Legrand, R. (2002). In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials, 23(12), 2569–2575. doi:10.1016/s0142-9612(01)00392-1
Dayer J. M. (2002). Interleukin 1 or tumor necrosis factor-alpha: which is the real target in rheumatoid arthritis?. The Journal of rheumatology. Supplement, 65, 10–15.
Dey, A., Mukhopadhyay, A. K., Gangadharan, S., Sinha, M. K., & Basu, D. (2009). Characterization of microplasma sprayed hydroxyapatite coating. Journal of thermal spray technology, 18, 578-592.
Di Benedetto, P., Ruscitti, P., Vadasz, Z., Toubi, E., & Giacomelli, R. (2019). Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmunity reviews, 18(10), 102369. doi:10.1016/j.autrev.2019.102369
Dickens, B., Schroeder, L. W., & Brown, W. E. (1974). Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3 (PO4) 2. The crystal structure of pure β-Ca3 (PO4) 2. Journal of Solid State Chemistry, 10(3), 232-248. doi:10.1016/0022-4596(74)90030-9
Dinarello C. A. (1997). Interleukin-1. Cytokine & growth factor reviews, 8(4), 253–265. doi.10.1016/s1359-6101(97)00023-3
Ding, C., Yang, C., Cheng, T., Wang, X., Wang, Q., He, R., Sang, S., Zhu, K., Xu, D., Wang, J., Liu, X., & Zhang, X. (2021). Macrophage-biomimetic porous Se@SiO2 nanocomposites for dual modal immunotherapy against inflammatory osteolysis. Journal of nanobiotechnology, 19(1), 382. doi.10.1186/s12951-021-01128-4
Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie (International ed. in English), 41(17), 3130–3146. doi:10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
Dorozhkin S. V. (2012). Biphasic, triphasic and multiphasic calcium orthophosphates. Acta biomaterialia, 8(3), 963–977. doi:10.1016/j.actbio.2011.09.003
Douglas, T., Pamula, E., Hauk, D., Wiltfang, J., Sivananthan, S., Sherry, E., & Warnke, P. H. (2009). Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. Journal of materials science. Materials in medicine, 20(9), 1909–1915. doi:10.1007/s10856-009-3756-7
Dougall, W. C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M. E., Maliszewski, C. R., Armstrong, A., Shen, V., Bain, S., Cosman, D., Anderson, D., Morrissey, P. J., Peschon, J. J., & Schuh, J. (1999). RANK is essential for osteoclast and lymph node development. Genes & development, 13(18), 2412–2424.
doi.10.1101/gad.13.18.2412
Downey, P. A., & Siegel, M. I. (2006). Bone biology and the clinical implications for osteoporosis. Physical therapy, 86(1), 77-91. doi: 10.1093/ptj/86.1.77
Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., et al. (2021). Toxicity of nanoparticles in biomedical application: nanotoxicology. J. Toxicol. 2021, 1–21. doi:10.1155/2021/9954443
Eivazzadeh-Keihan, R., Bahojb Noruzi, E., Khanmohammadi Chenab, K., Jafari, A., Radinekiyan, F., Hashemi, S. M., Ahmadpour, F., Behboudi, A., Mosafer, J., Mokhtarzadeh, A., Maleki, A., & Hamblin, M. R. (2020). Metal-based nanoparticles for bone tissue engineering. Journal of tissue engineering and regenerative medicine, 14(12), 1687–1714. doi:10.1002/term.3131
Ellinger, R. F., Nery, E. B., & Lynch, K. L. (1986). Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. The International journal of periodontics & restorative dentistry, 6(3), 22–33.
Fatima, S., Alfrayh, R., Alrashed, M., Alsobaie, S., Ahmad, R., and Mahmood, A. (2021). Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int. J. Nanomedicine 16, 331–343. doi:10. 2147/ijn.s285233
Feldmann, M., Brennan, F. M., & Maini, R. N. (1996). Role of cytokines in rheumatoid arthritis. Annual review of immunology, 14(1), 397-440. doi: 10.1146/annurev.immunol.14.1.397
Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced drug delivery reviews, 156, 4–22. doi:10.1016/j.addr.2020.06.022
Franceschi, R. T., & Ge, C. (2017). Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling. Current molecular biology reports, 3(2), 122–132. doi:10.1007/s40610-017-0059-5
Franz, S., Rammelt, S., Scharnweber, D., and Simon, J. C. (2011). Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709. doi:10.1016/j.biomaterials.2011.05.078
Franz-Odendaal, T. A., Hall, B. K., & Witten, P. E. (2006). Buried alive: how osteoblasts become osteocytes. Developmental dynamics : an official publication of the American Association of Anatomists, 235(1), 176–190. doi.org/10.1002/dvdy.20603
Fratzl, P.; Gupta, H. S.; Paschalis, E. P.; Roschger, P. (2004). Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem, 14 (14), 2115-2123. doi: 10.1039/B402005G
Freytes, D. O., Wan, L. Q., & Vunjak-Novakovic, G. (2009). Geometry and force control of cell function. Journal of cellular biochemistry, 108(5), 1047–1058. doi:10.1002/jcb.22355
Gallo, J., Goodman, S. B., Konttinen, Y. T., Wimmer, M. A., and Holinka, M. (2013). Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 9, 8046–8058. doi:10.1016/j.actbio.2013.05.005
Ge, C., Xiao, G., Jiang, D., Yang, Q., Hatch, N. E., Roca, H., & Franceschi, R. T. (2009). Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. The Journal of biological chemistry, 284(47), 32533–32543. doi:10.1074/jbc.M109.040980
Gerhardt, Lutz-Christian, and Aldo R. Boccaccini. (2010). Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 3, no. 7: 3867-3910. doi:10.3390/ma3073867
Ghahremani, F., Kefayat, A., Shahbazi-Gahrouei, D., Motaghi, H., Mehrgardi, M. A., and Haghjooy-Javanmard, S. (2018). AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine (Lond) 13, 2563–2578. doi:10.2217/nnm-2018-0180
Glass, G. E., Chan, J. K., Freidin, A., Feldmann, M., Horwood, N. J., & Nanchahal, J. (2011). TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1585–1590. doi:10.1073/pnas.1018501108
Greenblatt, M. B., Shim, J. H., Zou, W., Sitara, D., Schweitzer, M., Hu, D., Lotinun, S., Sano, Y., Baron, R., Park, J. M., Arthur, S., Xie, M., Schneider, M. D., Zhai, B., Gygi, S., Davis, R., & Glimcher, L. H. (2010). The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. The Journal of clinical investigation, 120(7), 2457–2473. doi:10.1172/JCI42285
Grigoriadis, A. E., Heersche, J. N., & Aubin, J. E. (1988). Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. The Journal of cell biology, 106(6), 2139-2151. doi: 10.1083/jcb.106.6.2139
Guo, H., Su, J., Wei, J., Kong, H., & Liu, C. (2009). Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta biomaterialia, 5(1), 268–278. doi:10.1016/j.actbio.2008.07.018
Hara, Y., Ukai, T., Yoshimura, A., Shiku, H., and Kato, I. (1998). Histopathological study of the role of CD4-and CD8-positive T cells on bone resorption induced by Escherichia coli endotoxin. Calcif. Tissue Int. 63, 63–66. doi:10.1007/s002239900490
Hartmann, N. B., Jensen, K. A., Baun, A., Rasmussen, K., Rauscher, H., Tantra, R., et al. (2015). Techniques and protocols for dispersing nanoparticle powders in aqueous media-is there a rationale for harmonization? J. Toxicol. Environ. Health B Crit. Rev. 18, 299–326. doi:10.1080/10937404.2015.1074969
He, F., Ren, W., Tian, X., Liu, W., Wu, S., and Chen, X. (2016). Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic. Mater Sci. Eng. C Mater Biol. Appl. 64, 117–123. doi:10.1016/j.msec. 2016.03.085
Henriksen, K., Bollerslev, J., Everts, V., & Karsdal, M. A. (2011). Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocrine reviews, 32(1), 31–63. doi:10.1210/er.2010-0006
Hofbauer, L. C., & Heufelder, A. E. (2001). Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. Journal of molecular medicine (Berlin, Germany), 79(5-6), 243–253. doi.10.1007/s001090100226
Horch, H. H., Sader, R., Pautke, C., Neff, A., Deppe, H., and Kolk, A. (2006). Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 35, 708–713. doi:10.1016/j.ijom.2006.03.017
Horwood N. J. (2016). Macrophage Polarization and Bone Formation: A review. Clinical reviews in allergy & immunology, 51(1), 79–86. doi:10.1007/s12016-015-8519-2
Iijima, M., Kobayakawa, M., Yamazaki, M., Ohta, Y., and Kamiya, H. (2009). Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites. J. Am. Chem. Soc. 131, 16342–16343. doi:10. 1021/ja906655r
Jäger, I., & Fratzl, P. (2000). Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophysical journal, 79(4), 1737–1746. doi: 10.1016/S0006-3495(00)76426-5
Jensen, S. S., Bornstein, M. M., Dard, M., Bosshardt, D. D., and Buser, D. (2009). Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J. Biomed. Mater Res. B Appl. Biomater. 90, 171–181. doi:10.1002/jbm.b.31271
Jeong, J., Kim, J. H., Shim, J. H., Hwang, N. S., & Heo, C. Y. (2019). Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials research, 23, 4. doi.10.1186/s40824-018-0149-3
Kadono, Y., Tanaka, S., Nishino, J., Nishimura, K., Nakamura, I., Miyazaki, T., Takayanagi, H., & Nakamura, K. (2009). Rheumatoid arthritis associated with osteopetrosis. Modern rheumatology, 19(6), 687–690. doi:10.1007/s10165-009-0208-7
Kefayat, A., Ghahremani, F., Motaghi, H., and Amouheidari, A. (2019a). Ultra-small but ultra-effective: folic acid-targeted gold nanoclusters for enhancement of intracranial glioma tumors’ radiation therapy efficacy. Nanomedicine 16, 173–184. doi:10.1016/j. nano.2018.12.007
Kefayat, A., Ghahremani, F., Motaghi, H., and Mehrgardi, M. A. (2019b). Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur. J. Pharm. Sci. 130, 225–233. doi:10.1016/j.ejps.2019.01.037
Komori T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and tissue research, 339(1), 189–195. doi:10.1007/s00441-009-0832-8
Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., … Boyle, W. J. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165–176. doi.10.1016/s0092-8674(00)81569-x
Lee, C. H., Kim, Y. J., Jang, J. H., & Park, J. W. (2016). Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnology, 27(8), 085101. doi:10.1088/0957-4484/27/8/085101
Lerner U. H. (2006). Inflammation-induced bone remodeling in periodontal disease and the influence of post-menopausal osteoporosis. Journal of dental research, 85(7), 596–607. doi.10.1177/154405910608500704
Li, L., Liu, T., Fu, C., Tan, L., Meng, X., and Liu, H. (2015). Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine 11, 1915–1924. doi:10.1016/j.nano.2015.07.004
Li, Y., Zhang, X., & de Groot, K. (1997). Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials, 18(10), 737–741. doi.10.1016/s0142-9612(96)00203-7
Lin, K., Pan, J., Chen, Y., Cheng, R., and Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard Mater 161, 231–240. doi:10.1016/j.jhazmat.2008.03.076
Lippmann, M. (1990). Effects of fiber characteristics on lung deposition, retention, and disease. Environ. Health Perspect. 88, 311–317. doi:10.1289/ehp.9088311 Liu, D. M., Yang, Q., Troczynski, T., and Tseng, W. J. (2002). Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 23, 1679–1687. doi:10.1016/s0142- 9612(01)00295-2
Liu, D. M., Yang, Q., Troczynski, T., and Tseng, W. J. (2002). Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 23, 1679–1687. doi:10.1016/s0142-9612(01)00295-2
Liu, W., Li, J., Cheng, M., Wang, Q., Yeung, K. W. K., Chu, P. K., & Zhang, X. (2018). Zinc-Modified Sulfonated Polyetheretherketone Surface with Immunomodulatory Function for Guiding Cell Fate and Bone Regeneration. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 5(10), 1800749. https://doi.org/10.1002/advs.201800749
Liu, Y., Hardie, J., Zhang, X., & Rotello, V. M. (2017). Effects of engineered nanoparticles on the innate immune system. Seminars in immunology, 34, 25–32. doi:10.1016/j.smim.2017.09.011
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. doi:10.1006/meth.2001.1262
Markovic, M., Fowler, B. O., & Tung, M. S. (2004). Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material. Journal of research of the National Institute of Standards and Technology, 109(6), 553–568. doi:10.6028/jres.109.042
Marks, S.C., & Popoff, S.N. (1988). Bone cell biology: the regulation of development, structure, and function in the skeleton. The American journal of anatomy, 183 1, 1-44 . doi:10.1002/aja.1001830102
Mathew M, et al. (1977). The crystal structure of α-Ca3 (PO4)2. Acta Crystallogr B Struct Crystallogr Cryst Chem. 1977;33:1325–33. doi:10.1107/S0567740877006037
Matsugaki, A., Harada, T., Kimura, Y., Sekita, A., & Nakano, T. (2018). Dynamic Collision Behavior Between Osteoblasts and Tumor Cells Regulates the Disordered Arrangement of Collagen Fiber/Apatite Crystals in Metastasized Bone. International journal of molecular sciences, 19(11), 3474. doi: 10.3390/ijms19113474
Matsuguchi, T., Chiba, N., Bandow, K., Kakimoto, K., Masuda, A., & Ohnishi, T. (2009). JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 24(3), 398–410. doi:10.1359/jbmr.081107
Matsuo, K., & Irie, N. (2008). Osteoclast–osteoblast communication. Archives of biochemistry and biophysics, 473(2), 201-209. doi:
10.1016/j.abb.2008.03.027
Mbalaviele, G., Novack, D. V., Schett, G., and Teitelbaum, S. L. (2017). Inflammatory osteolysis: a conspiracy against bone. J. Clin. Invest. 127 (6), 2030–2039. doi:10.1172/ jci93356
Mieszawska, A. J., & Kaplan, D. L. (2010). Smart biomaterials - regulating cell behavior through signaling molecules. BMC biology, 8, 59. doi:10.1186/1741-7007-8-59
Möller, B., & Villiger, P. M. (2006). Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer seminars in immunopathology, 27(4), 391–408. doi.10.1007/s00281-006-0012-9
Morris, H. F., and Ochi, S. (1998). Hydroxyapatite-coated implants: a case for their use. J. Oral Maxillofac. Surg. 56, 1303–1311. doi:10.1016/s0278-2391(98) 90615-2
Motskin, M., Muller, K. H., Genoud, C., Monteith, A. G., and Skepper, J. N. (2011). The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials 32, 9470–9482. doi:10.1016/j.biomaterials.
2011.08.060
Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., et al. (2009). Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30, 3307–3317. doi:10.1016/j.biomaterials. 2009.02.044
Mouriño, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface, 7(43), 209–227. doi:10.1098/rsif.2009.0379
Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., et al. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221–231. doi:10.1016/j.taap.2005.01.008
Muller, K. H., Motskin, M., Philpott, A. J., Routh, A. F., Shanahan, C. M., Duer, M. J., et al. (2014). The effect of particle agglomeration on the formation of a surfaceconnected compartment induced by hydroxyapatite nanoparticles in human monocytederived macrophages. Biomaterials 35, 1074–1088. doi:10.1016/j.biomaterials.2013. 10.041
Murray P. J. (2017). Macrophage Polarization. Annual review of physiology, 79, 541–566. doi:10.1146/annurev-physiol-022516-034339
Nich, C., Takakubo, Y., Pajarinen, J., Ainola, M., Salem, A., Sillat, T., et al. (2013). Macrophages-Key cells in the response to wear debris from joint replacements. J. Biomed. Mater Res. A 101, 3033–3045. doi:10.1002/jbm.a.34599
Niu, Y., Wang, Z., Shi, Y., Dong, L., & Wang, C. (2020). Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioactive materials, 6(1), 244–261. https://doi.org/10.1016/j.bioactmat.2020.08.012
Ogata, K., Imazato, S., Ehara, A., Ebisu, S., Kinomoto, Y., Nakano, T., et al. (2005). Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites. J. Biomed. Mater Res. A 72, 127–135. doi:10.1002/ jbm.a.30146
Ono, T., & Takayanagi, H. (2017). Osteoimmunology in Bone Fracture Healing. Current osteoporosis reports, 15(4), 367–375. doi:10.1007/s11914-017-0381-0
Owen, T. A., Aronow, M., Shalhoub, V., Barone, L. M., Wilming, L., Tassinari, M. S., Kennedy, M. B., Pockwinse, S., Lian, J. B., & Stein, G. S. (1990). Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of cellular physiology, 143(3), 420–430. doi:10.1002/jcp.1041430304
Patel, N., Best, S. M., Bonfield, W., Gibson, I. R., Hing, K. A., Damien, E., & Revell, P. A. (2002). A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Journal of materials science. Materials in medicine, 13(12), 1199–1206. doi:10.1023/a:1021114710076
Patil, S.P. (2020). Burungale, V.V. 2-Physical and Chemical Properties of Nanomaterials. In Nanomedicines for Breast Cancer Theranostics;
Thorat, N.D., Bauer, J., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–31.
Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088. doi:10.1126/science.282.5396.2085
Purdue, P. E., Koulouvaris, P., Potter, H. G., Nestor, B. J., & Sculco, T. P. (2007). The cellular and molecular biology of periprosthetic osteolysis. Clinical orthopaedics and related research, 454, 251–261. doi:10.1097/01.blo.0000238813.95035.1b
Quinn, J. M., Horwood, N. J., Elliott, J., Gillespie, M. T., & Martin, T. J. (2000). Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15(8), 1459–1466. doi.10.1359/jbmr.2000.15.8.1459
Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., et al. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625. doi:10.1084/jem.189.4.615
Ramires, P. A., Wennerberg, A., Johansson, C. B., Cosentino, F., Tundo, S., and Milella, E. (2003). Biological behavior of sol-gel coated dental implants. J. Mater Sci. Mater Med. 14, 539–545. doi:10.1023/a:1023412131314
Rao, A. J., Gibon, E., Ma, T., Yao, Z., Smith, R. L., & Goodman, S. B. (2012). Revision joint replacement, wear particles, and macrophage polarization. Acta biomaterialia, 8(7), 2815–2823. doi:10.1016/j.actbio.2012.03.042
Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in polymer science, 36(7), 887-913.
Remya, N. S., Syama, S., Gayathri, V., Varma, H. K., and Mohanan, P. V. (2014). An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids Surf. B Biointerfaces 117, 389–397. doi:10.1016/j.colsurfb.2014.02.004
Richard, B., Lemyre, J. L., and Ritcey, A. M. (2017). Nanoparticle size control in microemulsion synthesis. Langmuir 33, 4748–4757. doi:10.1021/acs.langmuir.7b00773 Salata, O. (2004). Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3. doi:10.1186/1477-3155-2-3
Rifas L. (2006). T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. Journal of cellular biochemistry, 98(4), 706–714. doi:10.1002/jcb.20933
Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual review of biomedical engineering, 8, 455–498. doi:10.1146/annurev.bioeng.8.061505.095721
Samavedi, S., Whittington, A. R., and Goldstein, A. S. (2013). Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9, 8037–8045. doi:10.1016/j.actbio.2013.06.014
Sattary, M., Kefayat, A., Bigham, A., and Rafienia, M. (2022). Polycaprolactone/ Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater. Technol. 37, 302–315. doi:10.1080/10667857.2020.1837488
Schett G. (2009). Osteoimmunology in rheumatic diseases. Arthritis research & therapy, 11(1), 210. doi:10.1186/ar2571
Schett, G., & Teitelbaum, S. L. (2009). Osteoclasts and arthritis. Journal of Bone and Mineral Research, 24(7), 1142-1146. doi:10.1359/jbmr.090533
Schlundt, C., El Khassawna, T., Serra, A., Dienelt, A., Wendler, S., Schell, H., van Rooijen, N., Radbruch, A., Lucius, R., Hartmann, S., Duda, G. N., & Schmidt-Bleek, K. (2018). Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone, 106, 78–89. doi:10.1016/j.bone.2015.10.019
Segovia-Silvestre, T., Neutzsky-Wulff, A. V., Sorensen, M. G., Christiansen, C., Bollerslev, J., Karsdal, M. A., & Henriksen, K. (2009). Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Human genetics, 124(6), 561–577. doi:10.1007/s00439-008-0583-8
Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of cellular physiology, 233(9), 6425–6440. doi:10.1002/jcp.26429
Shen, X., Yu, Y., Ma, P., Luo, Z., Hu, Y., Li, M., He, Y., Zhang, Y., Peng, Z., Song, G., & Cai, K. (2019). Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids and surfaces. B, Biointerfaces, 180, 39–48. doi:10.1016/j.colsurfb.2019.04.033
Sheppard, A. J., Barfield, A. M., Barton, S., and Dong, Y. (2022). Understanding reactive oxygen species in bone regeneration: a glance at potential therapeutics and bioengineering applications. Front. Bioeng. Biotechnol. 10, 836764. doi:10.3389/fbioe. 2022.836764
Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Lüthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, L., … Boyle, W. J. (1997). Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 89(2), 309–319. doi.10.1016/s0092-8674(00)80209-3
Sims, N. A., & Gooi, J. H. (2008). Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in cell & developmental biology, 19(5), 444–451. doi: 10.1016/j.semcdb.2008.07.016
Subramani, K., & Ahmed, W. (Eds.). (2017). Emerging nanotechnologies in dentistry. William Andrew.
Tande AJ, Patel R. (2014). Prosthetic Joint Infection. Clin Microbiol Rev 27:.
doi:10.1128/cmr.00111-13
Tautzenberger, A., Kovtun, A., and Ignatius, A. (2012). Nanoparticles and their potential for application in bone. Int. J. Nanomedicine 7, 4545–4557. doi:10.2147/ijn. s34127
Teitelbaum S. L. (2000). Bone resorption by osteoclasts. Science (New York, N.Y.), 289(5484), 1504–1508. doi:10.1126/science.289.5484.1504
Teitelbaum S. L. (2007). Osteoclasts: what do they do and how do they do it?. The American journal of pathology, 170(2), 427–435. doi.10.2353/ajpath.2007.060834
Teoh, W. Y., Amal, R., and Madler, L. (2010). Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2, 1324–1347. doi:10. 1039/c0nr00017e
Trivedi, S., Srivastava, K., Gupta, A., Saluja, T. S., Kumar, S., Mehrotra, D., & Singh, S. K. (2020). A quantitative method to determine osteogenic differentiation aptness of scaffold. Journal of oral biology and craniofacial research, 10(2), 158–160. doi.10.1016/j.jobcr.2020.04.006
Tsiridis, E., Bhalla, A., Ali, Z., Gurav, N., Heliotis, M., Deb, S., et al. (2006). Enhancing the osteoinductive properties of hydroxyapatite by the addition of human mesenchymal stem cells, and recombinant human osteogenic protein-1 (BMP-7) in vitro. Injury 37 (l), S25–S32. doi:10.1016/j.injury.2006.08.021
Vallet-Regi, Maria & Arcos, Daniel. (2006). Nanostructured Hybrid Materials for Bone Tissue Regeneration. Current Nanoscience. 2. 179-189. doi:10.2174/1573413710602030179.
Wang, L., Zhang, H., Sun, L., Gao, W., Xiong, Y., Ma, A., Liu, X., Shen, L., Li, Q., & Yang, H. (2020). Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. Journal of nanobiotechnology, 18(1), 38. doi:10.1186/s12951-020-00593-7
Wang, R., Hu, H., Guo, J., Wang, Q., Cao, J., Wang, H., et al. (2019). Nanohydroxyapatite modulates osteoblast differentiation through autophagy induction via mTOR signaling pathway. J. Biomed. Nanotechnol. 15, 405–415. doi:10.1166/jbn.2019. 2677
Wen, J., Cai, D., Gao, W., He, R., Li, Y., Zhou, Y., et al. (2023). Osteoimmunomodulatory nanoparticles for bone regeneration. Nanomater. (Basel) 13, 692. doi:10.3390/nano13040692
Wei, S., & Siegal, G. P. (2008). Mechanisms modulating inflammatory osteolysis: a review with insights into therapeutic targets. Pathology, research and practice, 204(10), 695–706.doi:10.1016/j.prp.2008.07.002
Wei, S., Teitelbaum, S. L., Wang, M. W., & Ross, F. P. (2001). Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology, 142(3), 1290–1295. doi.10.1210/endo.142.3.8031
Wei, S., Wang, M. W., Teitelbaum, S. L., & Ross, F. P. (2002). Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. The Journal of biological chemistry, 277(8), 6622–6630. doi.10.1074/jbc.M104957200
Whitaker, R., Hernaez-Estrada, B., Hernandez, R. M., Santos-Vizcaino, E., and Spiller, K. L. (2021). Immunomodulatory biomaterials for tissue repair. Chem. Rev. 121, 11305–11335. doi:10.1021/acs.chemrev.0c00895
White, T. J., & ZhiLi, D. (2003). Structural derivation and crystal chemistry of apatites. Acta crystallographica. Section B, Structural science, 59(Pt 1), 1–16. doi:10.1107/s0108768102019894
Wilson, H. M., Barker, R. N., & Erwig, L. P., (2009). Macrophages: promising targets for the treatment of atherosclerosis. Current vascular pharmacology, 7(2), 234–243. doi:10.2174/157016109787455635
Xiao, L., Ma, Y., Crawford, R., Mendhi, J., Zhang, Y., Lu, H., Zhao, Q., Cao, J., Wu, C., Wang, X., (2022) The Interplay between
Hemostasis and Immune Response in Biomaterial Development for Osteogenesis. Mater. Today, 54, 202–224. doi:10.1016/j.mattod.2022.02.010
Xie, J., Lee, S., and Chen, X. (2010). Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079. doi:10.1016/j.addr.2010.07.009
Xie, Y., Hu, C., Feng, Y., Li, D., Ai, T., Huang, Y., Chen, X., Huang, L., & Tan, J. (2020). Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regenerative biomaterials, 7(3), 233–245. doi:10.1093/rb/rbaa006
Yamada, S., Heymann, D., Bouler, J. M., and Daculsi, G. (1997). Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 18, 1037–1041. doi:10.1016/s0142-9612(97)00036-7
Yang, C., Ouyang, L., Wang, W., Chen, B., Liu, W., Yuan, X., Luo, Y., Cheng, T., Yeung, K. W. K., Liu, X., & Zhang, X. (2019). Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. Journal of materials chemistry. B, 7(36), 5541–5553. https://doi.org/10.1039/c9tb01298b
Yang, C., Wang, W., Zhu, K., Liu, W., Luo, Y., Yuan, X., Wang, J., Cheng, T., & Zhang, X. (2019). Lithium chloride with immunomodulatory function for regulating titanium nanoparticle-stimulated inflammatory response and accelerating osteogenesis through suppression of MAPK signaling pathway. International journal of nanomedicine, 14, 7475–7488. doi:10.2147/IJN.S210834
Yang, G., and Park, S. J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Mater. (Basel) 12, 1177. doi:10.3390/ ma12071177
Yang, X., Li, Y., Liu, X., Zhang, R., and Feng, Q. (2018). In vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 1–10. doi:10.1155/2018/ 2036176
Yao, C. H., Liu, B. S., Hsu, S. H., Chen, Y. S., and Tsai, C. C. (2004). Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J. Biomed. Mater Res. A 69, 709–717. doi:10.1002/jbm.a.30045
Yoshikawa, H., and Myoui, A. (2005). Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs 8, 131–136. doi:10.1007/s10047-005-0292-1
Zhao, Y. J., Gao, Z. C., He, X. J., & Li, J. (2021). The let-7f-5p-Nme4 pathway mediates tumor necrosis factor α-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochemistry and cell biology = Biochimie et biologie cellulaire, 99(4), 488–498. doi:10.1139/bcb-2020-0281
Zhang, B., Sai Lung, P., Zhao, S., Chu, Z., Chrzanowski, W., and Li, Q. (2017). Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci. Rep. 7, 7315. doi:10.1038/s41598-017-07588-9
Zhang, Q., Qin, M., Zhou, X., Nie, W., Wang, W., Li, L., et al. (2018). Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis. J. Mater Chem. B 6, 6731–6743. doi:10.1039/c8tb02138d
Zhang, Q., Xin, M., Yang, S., Wu, Q., Xiang, X., Wang, T., et al. (2023). Silica nanocarrier-mediated intracellular delivery of rapamycin promotes autophagymediated M2 macrophage polarization to regulate bone regeneration. Mater Today Bio 20, 100623. doi:10.1016/j.mtbio.2023.100623
Zhang, S., Liu, Y., & Liang, Q. (2018). Low-dose dexamethasone affects osteoblast viability by inducing autophagy via intracellular ROS. Molecular medicine reports, 17(3), 4307–4316. doi.10.3892/mmr.2018.8461
Zheng, K., Niu, W., Lei, B., and Boccaccini, A. R. (2021). Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 133, 168–186. doi:10.1016/j. actbio.2021.08.023
Zheng, M. H., Wood, D. J., & Papadimitriou, J. M. (1992). What's new in the role of cytokines on osteoblast proliferation and differentiation?. Pathology, research and practice, 188(8), 1104–1121. doi:10.1016/S0344-0338(11)81263-X
Zheng, S., Tian, Y., Ouyang, J., Shen, Y., Wang, X., & Luan, J. (2022). Carbon nanomaterials for drug delivery and tissue engineering. Frontiers in chemistry, 10, 990362. doi:10.3389/fchem.2022.990362
Zhu, K., Yang, C., Dai, H., Li, J., Liu, W., Luo, Y., Zhang, X., & Wang, Q. (2019). Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. International immunopharmacology, 76, 105865. doi:10.1016/j.intimp.2019.105865