簡易檢索 / 詳目顯示

研究生: 徐偉豪
Hsu, Wei-Hao
論文名稱: 以低能量電子點投影顯微術/繞射顯微術研究懸浮之石墨烯
Low-energy Electron Point Projection Microscopy/Diffraction Study of Suspended Graphene
指導教授: 黃英碩
Hwang, Ing-Shouh
口試委員: 張嘉升
蘇維彬
楊志文
朱明文
陳健群
莊程豪
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 86
中文關鍵詞: 石墨烯石墨烯撓曲低能量電子束點投影顯微術點投影繞射成像術吸附物散焦電子束繞射
外文關鍵詞: graphene, graphene ripples, low-energy electron beams, point projection microscopy, point projection diffractive imaging, adsorbates, divergent beam electron diffraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這本論文中,我們用低能量電子點投影顯微術/繞射顯微術觀察懸浮的石墨烯樣品。在傳統的低能量電子點投影顯微術中,用來擷取影像的屏幕是固定於一個位置。我們做了一項改變:在我們的儀器中,屏幕可以在光軸上前後移動。這樣的改變使我們可以收集到高角度的繞射訊息,這是在過去的低能量電子點投影顯微術無法獲得的資訊。如此一來,二維材料如石墨烯上的奈米級吸附物、表面乾淨度等可藉由投影影像觀察,而繞射影像可提供石墨烯不同層間的方向性改變及表面起伏等訊息。我們準備了兩種樣品,分別是物理性剝離的石墨烯以及以化學氣相沉積法製備的石墨烯,兩種樣品都懸浮在樣品載台並取得電子穿透影像。實驗結果顯示,石墨烯上的奈米級吸附物在低能量電子束長時間照射之下會隨著時間聚集形成更大的結構。再者,奈米級吸附物會使石墨烯表面產生形變形成奈米級撓曲。這些奈米級撓曲會隨著奈米級吸附物的聚集而產生改變。根據實驗結果搭配模擬計算,我們實驗得到的繞射圖形可以用”散焦電子束繞射術”分析。分析顯示實驗的繞射圖形可以觀察二維材料表面的形變。根據理論計算,使用50到250 eV的低能量的電子束最小可觀察到1埃的形變。最後我們也討論了這個新架構會面臨的問題,以及運用低能量電子點投影顯微術/繞射顯微術發展同調電子繞射成像術的潛力,以達成觀測超薄二維材料、生物分子和其他奈米材料原子結構的目標。


    In this dissertation, I present our study of suspended graphene with low-energy electrons based on a new electron microscopy, point projection microscopic/diffractive imaging technique. In contrast to traditional point projection microscopy (PPM) imaging, our setup allows adjustment of the sample-screen distance to record high-angle diffraction patterns. This technique allows imaging of individual adsorbates on graphene at the nanometer scale, determining the quality of the graphene with projection images, and characterizing the graphene thickness, graphene lattice orientations, and ripples on graphene with diffraction patterns. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. We found that long-duration exposure to low-energy electrons induced the accumulation of adsorbates on the graphene when the electron dose rate was above a certain level. In addition, the adsorbates may induce ripples on the graphene, and the ripples may change during electron illumination due to the aggregation of the adsorbates. The patterns recorded using our new technique can be viewed as “divergent beam electron diffraction (DBED)”. Theoretical simulations of the DBED patterns confirm observations of adsorbates and strain distribution at a lateral resolution of several nanometers in our experiments. The simulations also indicate that three-dimensional displacement of atoms as small as 1 angstrom from a perfect graphene lattice can be detected with low-energy electrons (50 – 250 eV). We also discuss the challenges of PPM and the potential of the low-energy electron point projection microscopic/diffractive imaging technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules deposited on suspended graphene.

    致謝 I 中文摘要 II Abstract III Chapter 1 Introduction 1 Chapter 2 Literature review 5 2.1 Brief introduction to PPM 5 2.2 PPM imaging of one-dimensional objects 7 2.2.1 PPM imaging of carbon fibers 7 2.2.2 PPM imaging of single macromolecule 8 2.2.3 PPM imaging of individual bio-molecules 9 2.2.4 Charge effect in PPM imaging 10 2.3 Observations of graphene with PPM 11 2.4 Single-atom tip (SAT) 19 Chapter 3 Experimental details 25 3.1 Instrumentation 25 3.2 Microscope stage 25 3.3 Image detection system 26 3.4 SAT preparation 27 3.5 Sample preparation 29 3.5.1 Exfoliated graphene samples 30 3.5.2 CVD graphene samples 32 Chapter 4 Low-energy electron point projection microscopic/diffractive imaging 34 4.1 Traditional PPM 34 4.2 Retractable screen 35 Chapter 5 Initial characterization of graphene samples using PPM/diffractive imaging technique 38 5.1 Exfoliated Graphene Sample 38 5.2 Exfoliated graphene sample without heat treatment 43 5.3 Cleanliness of CVD graphene samples 44 Chapter 6 PPM imaging of adsorbates on graphene surface 49 6.1 Accumulation of adsorbates 49 6.2 Imaging of mobile adsorbates 52 6.3 Discussion 54 Chapter 7 Study of suspended graphene based on low-energy electron point projection microscopic/diffractive imaging 56 7.1 Diffractive imaging of CVD graphene 57 7.2 Changes in diffraction patterns caused by aggregation of adsorbates 59 7.3 Theory of DBED and simulated DBED pattern of ripples in graphene 62 7.4 Changes in the diffraction patterns during the sample heating 67 7.5 Study of graphene sample with nanometer-scale broken holes 69 7.6 Orientations in double-layer region of CVD graphene 72 Chapter 8 Challenges and further development 74 Chapter 9 Conclusions 78 References 79

    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438, 197 (2005).
    2. A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183 (2007).
    3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys. 81, 109 (2009).
    4. T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “Macroscopic graphene membranes and their extraordinary stiffness”, Nano Lett. 8, 2442 (2008).
    5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385 (2008).
    6. A. Fasolino, J. H. Los and M. I. Katsnelson, “Intrinsic ripples in graphene”, Nature 6, 858 (2007).
    7. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth, “The structure of suspended graphene sheets”, Nature 446, 60 (2007).
    8. R. Zan, C. Muryn, U. Bangert, P. Mattocks, P. Wincott, D. Vaughan, X. Li, L. Colombo, R. S. Ruoff, B. Hamilton and K. S. Novoselov, “Scanning tunneling microscopy of suspended graphene”, Nanoscale 4, 3065 (2012).
    9. J.-N. Longchamp, S. Pauschenbach, S. Abb, C. Escher, T. Latychevskaia, K. Kern, and H.-W. Fink, “Imaging protiens at the single-molecule level”, Proc. Natl. Acad. Sci. U. S. A. 114, 1474 (2017).
    10. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, “Low-energy electron holographic imaging of individual tobacco mosaic virions”, Appl. Phys. Lett. 107, 133101 (2015).
    11. Z. Deng, N. Thontasen, N. Malinowski, G. Rinke, L. Harnau, S. Pauschenbach, and K. Kern, “A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome c at surfaces”, Nano Lett. 12, 2452 (2012).
    12. A. Reina, H. Son, L, Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and Identification of single- and few-layer graphene on arbitrary substrates”, J. Phys. Chem. C 112, 17741 (2008).
    13. Y. C. Lin, C. Jin, J. C. Lee, S. F. Jen, K. Suenaga, and P. W. Chiu, “Clean transfer of graphene for isolation and suspension”, ACS Nano 5, 2362 (2011).
    14. A. Yulaev, G. Cheng, A. R. H. Walker, I. V. Vlassiouk, A. Myers, M. S. Leite, and A. Kolmakov, “Toward clean suspended CVD graphene”, RSC Adv. 6, 83954 (2016).
    15. L. W. Hwang, C. K. Chang, F. C. Chien, K. H. Chen, P. Chen, F. R. Chen, and C. S. Chang, “Characterization of the cleaning process on a transferred graphene”, J. Vac. Sci. Technol. A 32, 050601 (2014).
    16. Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, “Graphene annealing: how clean can it be?” Nano Lett. 12, 414 (2012).
    17. W. H. Lin, T. H. Chen, J. K. Chang, J. I. Taur, Y. Y. Lo, W. L. Lee, C. S. Chang, W. B. Su, and C. I. Wu, “A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate”, ACS Nano 8, 1784 (2014).
    18. I. Pasternak, A. Krajewska, K. Grodecki, I. Jozwik-Biala, K. Sobczak, and W. Strupinski, Graphene films transfer using marker-frame method, AIP Advances 4, 097133 (2014).
    19. S. M. Shinde, G. Kalita, S. Sharma, Z. Zulkifli, R. Papon, and Masaki Tanemura, Polymer-free graphene transfer on moldable cellulose acetate based paper by hot press technique, Surf. Coat. Technol. 275, 369 (2015).
    20. H. Park, I. J. Park, D. Y. Jung, K. J. Lee, S. Y. Yang, and S. Y. Choi, Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors, 2D Mater. 3, 021003 (2016).
    21. A. Bachmatiuk, J. Zhao, S. M. Gorantla, I. G. G. Martinez, J. Wiedermann, C. Lee, J. Eckert, and M. H. Rummeli, Low voltage transmission electron microscopy of graphene, Small 11 (2015) 515542.
    22. U. Kaiser, J. Biskupek, J. C. Meyer, J. Leschner, L. Lechner, H. Rose, M. Stöger-Pollach, A. N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen, and G. Benner, Transmission electron microscopy at 20 kV for imaging and spectroscopy, Ultramicroscopy 111, 1239 (2011).
    23. D. C. Bell, C. J. Russo, and D. V. Kolmykov, 40 keV atomic resolution TEM, Ultramicroscopy 114, 31 (2012).
    24. S. Morishita, M. Mukai, K. Suenaga, and H. Sawada, Resolution enhancement in transmission electron microscopy with 60-kV monochromated electron source, Appl. Phys. Lett. 108, 013107 (2016).
    25. J. C. Meyer, F. Eder, S. Kurasch, V. Skakalova, J. Kotakoski, H. J. Park, S. Roth, A. Chuvilin, S. Eyhusen, G. Benner, A. V. Krasheninnikov, and U. Kaiser, Accurate measurement of electron beam induced displacement cross sections for single-layer graphene, Phys. Rev. Lett. 108 (2012) 196102.
    26. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectroscopy of graphene and graphene layers, Phys. Rev. Lett. 97, 187401 (2006).
    27. A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8, 235 (2013).
    28. J. C. H. Spence, W. Qian, and A. J. Melmed, Experimental low-voltage point-projection microscopy and its possibilities, Ultramicroscopy 52 (1993) 473477.
    29. A. Beyer and A. Gölzhäuser, “Low energy electron point source microscopy: beyond imaging” J. Phys.: Condens. Matter 22, 343001 (2010).
    30. D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer, New York, 2009).
    31. H. Vieker, A. Beyer, H. Blank, D. H. Weber, D. Gerthsen, and A. Gölzhäuser, Low energy electron point source microscopy of two-dimensional carbon nanostructures, Z. Phys. Chem. 255 (2011) 14331445.
    32. J.Y. Mutus, L. Livadaru, J.T. Robinson, R. Urban, M.H. Salomons, M. Cloutier, R.A. Wolkow, “Low-energy electron point projection microscopy of suspended graphene, the ultimate ‘microscope slide’” New J. Phys. 13, 063011 (2011).
    33. G. A. Morton, E. G. Ramberg, “Point projectior electron microscope” Phys. Rev. 56, 705 (1939).
    34. E. W. Muller, 15th Field Emission Symposium Bonn 1968; E. W. Muller and T. T. Tsong, “In field ion microscopy: Principle and applications” Elsevier Publ., New York, 1969.
    35. A. J. Melmed, “Field emission shadow microscopy” Appl. Phys. Lett. 12, 100 (1968).
    36. A. J. Melmed and J. Smit, “Field-ion transmission microscopy” J. Phys. E: Sci. Instrum. 12, 335, (1979).
    37. W. Stocker, H.-W. Fink and R. Morin, “Low-energy electron and ion projection microscopy” Ultramicroscopy 31, 379 (1989).
    38. H.W. Fink, W. Stocker H. Schmid, “Coherent point source electron beams” J. Vac. Sci. Technol. B 8, 1323 (1990).
    39. H.W. Fink, W. Stocker, H. Schmid, “Holography with low-energy electrons” Phys. Rev. Lett. 65, 1204 (1990).
    40. V.T. Binh, V. Semet, N. Garcia, “Low-energy-electron diffraction by nano-objects in projection microscopy without magnetic shielding” Appl. Phys. Lett. 65, 2493 (1994).
    41. J.Y. Park, S.H. Kim, Y.D. Suh, W.G. Park, Y. Kuk, “Low-energy electron point source microscope with position-sensitive electron energy analyzer” Rev. Sci. Instrum. 70, 4304 (1999).
    42. V.T. Binh, P. Vincent, F. Feschet, “Local analysis of the morphological properties of single-wall carbon nanotubes by Fresnel projection microscopy” J. Appl. Phys. 88, 3385 (2000).
    43. J.C.H. Spence, W. Qian, X. Zhang, “Contrast and radiation damage in point-projection electron imaging of purple membrane at 100 V” Ultramicroscopy 55, 19 (1994).
    44. H.W. Fink HW, C. Schönenberger, “Electrical conduction through DNA molecules” Nature 398, 407 (1999).
    45. A. Eisele, B. Völkel, M. Grunze, A. Gölzhäuser, “Nanometer resolution holography with the low energy electron point source microscope” Z. Phys. Chem. 222, 779 (2008).
    46. U. Weierstall, J.C.H. Spence, M. Stevensand, K.H. Downing, “Point-projection electron imaging of tabacco mosaic virus at 40 eV electron energy” Micron 30, 335 (1999).
    47. J.N. Longchamp, T. Latychevskaia, C. Escher, H.W. Fink, “Low-energy electron transmission imaging of clusters on free-standing graphene” Appl. Phys. Lett. 101, 113117 (2012).
    48. A. Gölzhäuser, B. Völkel, B. Jäger, M. Zharnikov, H. J. Kreuzer, and M. Grunze, “Holographic imaging of macromolecules” J. Vac. Sci. Technol. A 16, 3025 (1998).
    49. H.-W. Fink H. Schmid, E. Ermantraut and T. Schulz, “Electron holography of individual DNA molecules” J. Opt. Soc. Am. A 14, 2168 (1997).
    50. H.-W. Fink and C. Schonenberger, “Electrical conduction through DNA molecules” Nature 398, 407 (1999).
    51. U. Weierstall, J. C. H. Spence, M. Stevens and K. H. Downing, “Point-projection electron imaging of tobacco mosaic virus at 40 eV electron energy” Micron 30, 335 (1999).
    52. M. Prigent and P. Morin, “Charge effect in point projection images of carbon fibres” J. Microsc. 199, 197 (2000).
    53. G. M. Shedd, “Electron interference effects in electron projection microscopy” J. Vac. Sci. Technol. A 12, 2595 (1994).
    54. V. Georges, J. Bardon, A. Degiovanni and R. Morin, “Imaging charged objects using low-energy –electron coherent beams” Ultramicroscopy 90, 33 (2001).
    55. A. Gölzhäuser, B. Völkel, M. Grunze and H. J. Kreuzer, “Optimization of the low energy electron point source microscope: imaging of macromolecules” Micron 33, 241 (2002).
    56. A. Eisele, B. Völkel, M. Grunze and A. Gölzhäuser, “Nanometer resolution holography with the low energy electron point source microscope” Z. Phys. Chem. 222, 779 (2008).
    57. I.-S. Hwang, C.-C. Chang, C.-H. Lu, S.-C. Liu, Y.-C. Chang, T.-K. Lee, H.-T. Jeng, H.-S. Kuo, C.-Y. Lin, C.-S. Chang, and T. T. Tsong, “Investigation of single-walled carbon nanotubes with a low-energy electron point projection microscope” New J. Phys. 15, 043015 (2013).
    58. H. Virker, A. Beyer, H. Blank, D. H. Weber, D. Gerthsen, and A. Gölzhäuser, “Low energy electron point source microscopy of two-dimensional carbon nanostructures” Z. Phys. Chem. 225, 1433 (2011).
    59. D. Gabor, “A new microscope principle”, Nature 161, 777 (1948).
    60. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Low-energy electron transmission imaging of clusters on free-standing graphene, Appl. Phys. Lett. 101, 113117 (2012).
    61. T. Latychevskaia, F. Wicki, J.-N. Longchamp, C. Escher, and H.-W. Fink, “Direct observation of individual charges and their dynamics on graphene by low-energy electron holography”, Nano Lett. 16, 5469 (2016).
    62. L.N. Longchamp, T. Latychevskaia, C. Escher, and H.W. Fink, “Graphene unit cell imaging by holographic coherent diffraction“, Phys. Rev. Lett. 110, 255501 (2013).
    63. J.-N. Longchamp, C. Escher, T. Latychevskaia, and H.-W. Fink, “Low-energy electron holographic imaging of gold nanorods supported by ultraclean graphene”, Ultramicroscopy 145, 80 (2014).
    64. Y. Cheng, N. Grigorieff, P. A. Penczek, and T. Walz, “A primer to single-particle cryo-electron microscopy.” Cell 161, 438 (2015).
    65. M.R. Scheinfein, W. Qian, J.C.H. Spence, “Aberrations of emission cathodes: Nanometer diameter field-emission electron sources”, J. App. Phys. 73, 2057 (1993).
    66. H.-W. Fink, “Mono-atomic tips for scanning tunneling microscopy”, IBM. J. Res. Develop. 30, 460 (1986).
    67. V. T. Binh, N. Garcia, “On the electron and metallic ion emission from nanotips fabricated by field-surface-melting technique-experiments on W and Au tips”, Ultramicroscopy 42, 80 (1992).
    68. K. Nagaoka, H. Fujii, K. Matsnda, M. Komaki, Y. Marata, C. Oshima and T. Sakurai, “Field emission spectroscopy from field-enhanced diffusion-growth nano-tips” Appl. Surf. Sci. 182, 12 (2001).
    69. K.J. Song, R.A. Demmin, C. Dong, E. Garfunkel, T.E. Madey, “Faceting induced by an ultrathin metal film: Pt on W(111)”, Surf. Sci. Lett. 227, L79 (1990).
    70. K.J. Song, C.Z. Dong, T.E. Madey, “Faceting of W(111) induced by ultrathin Pd films”, Langmuir 7, 3019 (1991).
    71. T.E. Madey, C.H. Nien, K. Pelhos, J.J. Kolodziej, I.M. Abdelrehim, H.S. Tao, “Faceting induced by ultrathin metal films: structure, electronic properties and reactivity”, Surf. Sci. 438, 191 (1999).
    72. S.P. Chen, “Theoretical studies of ultrathin film-induced faceting on W(111) surfaces”, Surf. Sci. Lett. 274, L619 (1992).
    73. J.G. Che, C.T. Chan, C.H. Kuo, T.C. Leung, “Faceting Induced by Ultrathin Metal Films: A First Principles Study”, Phys. Rev. Lett. 79, 4230 (1997).
    74. T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, “Method of creating a Pd-covered single-atom sharp W pyramidal tip: mechanism and energetics of its formation“, Phys. Rev. B 64, 113401 (2001).
    75. H.S. Kuo, I.S. Hwang, T.Y. Fu, J.Y. Wu, C.C. Chang, T.T. Tsong, “Preparation and characterization of single-atom tips“, Nano Lett. 4, 2379 (2004).
    76. H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.C. Lin, C.C. Chang, T.T. Tsong, “Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics“, Jpn. J. Appl. Phys. 45, 8972 (2006).
    77. T. Ishikawa, T. Urata, B. Cho, E. Rokuta, C. Oshima, “Highly efficient electron gun with a single-atom electron source”, Appl. Phys. Lett. 90, 143120 (2007).
    78. C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, “A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter“, Nanotechnology 20, 115401 (2009).
    79. J.-N. Longchamp, C. Escher, and H.-W. Fink, Ultraclean freestanding graphene by platinum-metal catalysis, J. Vac. Sci. Technol. B 31 (2013) 020605.
    80. W.T. Chang, I.S. Hwang, M.T. Chang, C.Y. Lin, W.H. Hsu, J.L. Hou, “Method of electrochemical etching of tungsten tips with controllable profiles”, Rev. Sci. Instrum. 83 083704 (2012).
    81. I.S. Hwang, H.S. Kuo, C.C. Chang, T.T. Tsong, “Noble-metal covered W(111) single-atom electron sources”, J. Electrochem. Soc. 157 7 (2010).
    82. W. T. Chang, C. Y. Lin, W. H. Hsu, M. T. Chang, Y. S. Chen, E. T. Hwu, and I. S. Hwang, Low-voltage coherent electron imaging based on a single-atom electron source, arXiv, 1512.08371 (2015).
    83. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
    84. W.H. Hsu, W.T. Chang, C.Y. Lin, M.T. Chang, C.T. Hsieh, C.R. Wang, W.L. Lee and I.S. Hwang, “Low-energy electron point projection microscopy/diffraction study of suspended graphene”, Appl. Surf. Sci. 423, 266 (2017).
    85. T. Latychevskaia, W. H. Hsu, W. T. Chang, C. Y. Lin, and I. S. Hwang, Three-dimensional surface topography of graphene by divergent beam electron diffraction, Nature Commun. 8, 14440 (2017).
    86. Z. A. Zangwill, Physics at Surface (Cambridge University, Cambridge, 1998).
    87. C. Y. Lin, W. T. Chang, Y. S. Chen, E. T. Hwu, C. S. Chang, I. S. Hwang, and W. H. Hsu, Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source, J. Vac. Sci. Technol. A 34, 021602 (2016).
    88. J.R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Opt. Lett. 3, 27 (1978).
    89. J.R. Fienup, “Phasr retrieval algorithm: a comparison”, Appl. Opt. 21, 2758 (1982)
    90. J. Miao, D. Sayre, H.N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects”, J. Opt. Soc. Am. A 15, 1662 (1998).
    91. C.C. Chen, J. Miao, C.W. Wang, T.K. Lee, “Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method”, Phys. Rev. B 76, 064113 (2007).
    92. S. P. Khare, M. K. Sharma, and S. Tomar, Electron impact ionization of methane, J. Phys. B 32, 3147 (1999).
    93. J. Spence, W. Qian, and X. Zhang, Contrast and radiation damage in point-projection electron imaging of purple membrane at 100 V, Ultramicroscopy 55, 19 (1994).
    94. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater. 14, 271 (2014).
    95. W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Sci. Rep. 4, 3826 (2014).

    QR CODE